Prediction of discharge coefficients for contaminated circular multi-hole orifice flow meters with deep learning algorithms

物理 阀体孔板 孔板 流量(数学) 流量系数 算法 机械 机械工程 热力学 计算机科学 喷嘴 工程类
作者
Jaber H. Almutairi,Mirza Pašić,Ejub Džaferović,Amra Hasečić
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2) 被引量:1
标识
DOI:10.1063/5.0252899
摘要

This study investigates the use of deep learning algorithms to predict the discharge coefficient (Cd) of contaminated multi-hole orifice flow meters with circular opening. Datasets (MHO1 and MHO2) were obtained from computational fluid dynamic simulations for two circular multi-hole orifice flow meters of different geometries. To evaluate the performance and generalization capabilities of different models, three distinct scenarios, each involving different dataset configurations and normalization techniques were designed. For each scenario, three deep learning models (feedforward neural networks, convolutional neural network, and recurrent neural network) were implemented and evaluated based on their performance metrics, including mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). For all three scenarios eight models for each neural network model were developed (FFNN – four models, CNN – two models, RNN – two models). The same structure of models was used across all scenarios to ensure consistency in the evaluation process. Key input parameters include geometrical and flow variables such as β – parameter, contamination thickness, radial distance, Reynolds number, and orifice diameters. Results demonstrate the effectiveness of deep learning in accurately predicting discharge coefficient for different contamination conditions and different geometries. This study showed that deep learning models can be used for prediction of discharge coefficients for multi-hole orifice flow meters of similar geometry, based on data obtained from one orifice flow meter for different contamination parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
小蘑菇应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
啊大大完成签到,获得积分10
1秒前
6666完成签到,获得积分10
1秒前
无私静白完成签到 ,获得积分10
1秒前
2秒前
你香完成签到,获得积分10
4秒前
4秒前
完美世界应助直率新柔采纳,获得30
5秒前
武子阳完成签到 ,获得积分10
5秒前
5秒前
6秒前
mly关闭了mly文献求助
6秒前
小桐维尼发布了新的文献求助10
7秒前
小袁完成签到,获得积分20
8秒前
科研通AI6应助凌波丽采纳,获得30
9秒前
9秒前
dhasjkda发布了新的文献求助10
9秒前
大模型应助NicotineZen采纳,获得10
9秒前
自由之柔发布了新的文献求助10
10秒前
11秒前
Friday发布了新的文献求助10
12秒前
小袁发布了新的文献求助10
13秒前
米子哈发布了新的文献求助10
13秒前
东十八完成签到,获得积分10
15秒前
16秒前
17秒前
充电宝应助土豆不吃鱼采纳,获得10
17秒前
18秒前
barbie4war发布了新的文献求助10
18秒前
大个应助mmyhn采纳,获得10
19秒前
九日完成签到,获得积分10
19秒前
大个应助丰富夜安采纳,获得10
19秒前
NicotineZen发布了新的文献求助10
21秒前
博闻发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751265
求助须知:如何正确求助?哪些是违规求助? 4096873
关于积分的说明 12675474
捐赠科研通 3809378
什么是DOI,文献DOI怎么找? 2103212
邀请新用户注册赠送积分活动 1128401
关于科研通互助平台的介绍 1005271