An autonomous driving vehicle guided safety decision algorithm based on HMM and Gaussian Markov distance

隐马尔可夫模型 高斯分布 计算机科学 马尔可夫链 人工智能 算法 机器学习 物理 量子力学
作者
Fang Liu,Luna Yue Lang,Weixing Su,Bing Guo
标识
DOI:10.1177/09544070251338665
摘要

Considering the current actual status of multi-level warning for Autonomous Vehicles (AVs), this paper takes the autonomous driving system of AVs as the research object, and focuses on the whole vehicle state, an AVs Multi-modal Guided Safety Decision (MGSD) algorithm based on Hidden Markov Model (HMM) and Gaussian Mahalanobis Distance (GMD) was proposed. The algorithm defines the safety-related modal of AVs into four levels based on the actual multi-level warning states of AVs. And based on the four-level safety-related modal, Multi-modal definition and Multi-modal Fuzzy Boundaries based on Gaussian Distribution (MFB-G) are proposed. On this basis, Multi-modal Pre-decision Model (MPM) based on GMD and MGSD based on HMM are proposed to realize the automatic guided safety decision for the safety-related modal of AVs. Therefore, the MGSD algorithm proposed does not rely on thresholds and has fewer adjustment parameters and better universality. In addition, it can also consider the individual differences of AVs systems and has a certain degree of online growth potential. Finally, the MGSD algorithm proposed is validated based on mixed abnormal modals of three subsystems in AVs. At the same time, it is compared with a traditional binary pattern detection algorithm based on the residual distribution test. The validation and comparison results indicate that the MGSD algorithm proposed has higher sensitivity, faster response speed, higher detection accuracy, and is more in line with the engineering needs of practical multi-level warning in AVs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
feitachi发布了新的文献求助10
1秒前
爆米花应助an采纳,获得10
2秒前
5秒前
火锅底料完成签到,获得积分10
5秒前
leo发布了新的文献求助10
5秒前
meatball1982完成签到,获得积分10
5秒前
乐观的海发布了新的文献求助10
5秒前
6秒前
111发布了新的文献求助10
6秒前
成就的蓝发布了新的文献求助10
7秒前
唠叨的洋葱完成签到,获得积分10
8秒前
feitachi完成签到,获得积分10
8秒前
wei_ahpu完成签到,获得积分10
9秒前
pluto应助奥术大师多采纳,获得10
10秒前
10秒前
Nicole发布了新的文献求助30
12秒前
一期一会发布了新的文献求助10
13秒前
13秒前
司空忆枫发布了新的文献求助10
14秒前
学术蛔虫完成签到 ,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
晴天发布了新的文献求助10
19秒前
鄙视注册完成签到,获得积分0
21秒前
crf912发布了新的文献求助10
22秒前
司空忆枫完成签到,获得积分10
23秒前
共享精神应助111采纳,获得10
24秒前
24秒前
phobeeee完成签到 ,获得积分10
26秒前
guang_sl给guang_sl的求助进行了留言
26秒前
彭于晏应助一期一会采纳,获得10
27秒前
29秒前
29秒前
李帅帅完成签到 ,获得积分10
30秒前
开饭发布了新的文献求助10
30秒前
31秒前
crf912完成签到,获得积分10
31秒前
传奇3应助刻苦的幻巧采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277241
求助须知:如何正确求助?哪些是违规求助? 3806033
关于积分的说明 11924985
捐赠科研通 3452703
什么是DOI,文献DOI怎么找? 1893614
邀请新用户注册赠送积分活动 943687
科研通“疑难数据库(出版商)”最低求助积分说明 847516