Federated Learning Framework for Brain Tumor Detection Using MRI Images in Non-IID Data Distributions

可解释性 计算机科学 机器学习 人工智能 相关性(法律) 过程(计算) 试验数据 联合学习 深度学习 考试(生物学) 独立同分布随机变量 数据挖掘 古生物学 统计 数学 随机变量 政治学 法学 生物 程序设计语言 操作系统
作者
M D Zahin Muntaqim,Tangin Amir Smrity
标识
DOI:10.1007/s10278-025-01484-9
摘要

Brain tumor detection from medical images, especially magnetic resonance imaging (MRI) scans, is a critical task in early diagnosis and treatment planning. Traditional machine learning approaches often rely on centralized data, raising concerns about data privacy, security, and the difficulty of obtaining large annotated datasets. Federated learning (FL) has emerged as a promising solution for training models across decentralized devices while maintaining data privacy. However, challenges remain in dealing with non-IID (independent and identically distributed) data, which is common in real-world scenarios. In this research, we used a client-server-based federated learning framework for brain tumor detection using MRI images, leveraging VGG19 as the backbone model. To improve clinical relevance and model interpretability, we have included explainability techniques, particularly Grad-CAM. We trained our model across four clients with non-IID data distribution to simulate real-world conditions. For performance evaluation, we used a centralized test dataset, consisting of 20% of the original data, with the test set used collectively for evaluating model performance after completing federated learning rounds. Using a separate test dataset ensures that all models are evaluated on the same data, making comparisons fair. Since the test dataset is not part of the FL training process, it does not violate the privacy-preserving nature of FL. The experimental results demonstrate that the VGG19 model achieves a high test accuracy of 97.18% (FedAVG), 98.24% (FedProx), and 98.45% (Scaffold) than other state-of-the-art models, showcasing the effectiveness of federated learning in handling distributed and non-IID data. Our findings highlight the potential of federated learning to address privacy concerns in medical image analysis while maintaining high performance even in non-IID settings. This approach provides a promising direction for future research in privacy-preserving AI for healthcare applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyh12138发布了新的文献求助10
刚刚
cx完成签到,获得积分10
刚刚
nulinuli完成签到 ,获得积分10
刚刚
gao_yiyi举报linda求助涉嫌违规
2秒前
cx发布了新的文献求助10
3秒前
zhang完成签到 ,获得积分10
3秒前
我爱学习完成签到,获得积分10
4秒前
爆米花应助百宝采纳,获得10
7秒前
谦让的半山完成签到 ,获得积分10
7秒前
孤独听雨的猫完成签到 ,获得积分10
8秒前
10秒前
淡然冬灵应助ououya采纳,获得10
12秒前
ttt完成签到,获得积分10
17秒前
caoxiang完成签到,获得积分10
18秒前
所所应助LXR采纳,获得10
20秒前
bzc229完成签到,获得积分10
20秒前
ws_WS_完成签到 ,获得积分10
21秒前
Chen发布了新的文献求助20
21秒前
21秒前
啊哦完成签到 ,获得积分10
22秒前
RMY完成签到 ,获得积分10
23秒前
24秒前
25秒前
清爽的绿蝶完成签到,获得积分20
26秒前
甜美板栗发布了新的文献求助10
26秒前
27秒前
HEIKU完成签到,获得积分0
27秒前
28秒前
29秒前
Chen发布了新的文献求助10
30秒前
30秒前
32秒前
mingtian发布了新的文献求助10
33秒前
酷炫若枫完成签到,获得积分10
34秒前
35秒前
五个字的下午完成签到,获得积分10
37秒前
jackson256发布了新的文献求助10
37秒前
天天快乐应助Passionfruit采纳,获得10
39秒前
LXR发布了新的文献求助10
41秒前
Yuan完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782796
求助须知:如何正确求助?哪些是违规求助? 3328174
关于积分的说明 10234921
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 758998