Fluid Intake Action Detection Based on Egocentric Videos and YOLOv8 Models

计算机科学 动作(物理) 计算机视觉 人工智能 物理 量子力学
作者
Xin Chen,Xinqi Bao,Ernest Nlandu Kamavuako
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2025.3548512
摘要

Dehydration in older adults poses significant health risks, requiring effective monitoring solutions. This study addresses the challenge of detecting fluid intake accurately using a first-person, vision-based approach with wearable cameras and advanced object detection models. We developed a comprehensive dataset comprising 17 hours of drinking footage (∼3100 events) and 15 hours of nondrinking activities (∼3600 events) recorded as interference, from 36 participants, collected between October 2022 and January 2023 at King's College London. We include various container types and daily activities to enhance the model's robustness and generalizability. YOLOv8 models were used to detect drinking-related objects, and a mechanism was developed to analyse the size and position of the detection output to identify hand-container interactions and movements. The models achieved mAP@50 over 0.97 and F1-score over 0.95 in detecting drinking-related objects. Action detection testing results from video streams demonstrated an F1-score of 0.917, which dropped to 0.863 when interference activities were added. Additionally, the model detected the start of drinking activities with an average latency of 0.24 seconds and the end with 0.04 seconds, indicating high temporal accuracy. These results demonstrate the feasibility of egocentric, vision-based fluidintake detection and its potential application in preventing dehydration. To our knowledge, this is the first vision-based dataset focusing on fluid-intake actions from a first-person viewpoint-offering a novel foundation for advancing hydration monitoring in older adults and various real-world contexts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李扒皮完成签到,获得积分10
刚刚
xu完成签到,获得积分10
1秒前
xcc完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
笑点低的孤丹完成签到 ,获得积分10
4秒前
4秒前
开心的万天完成签到,获得积分10
4秒前
加油完成签到,获得积分10
4秒前
adasdad发布了新的文献求助10
5秒前
如是之人发布了新的文献求助10
5秒前
如是之人发布了新的文献求助10
5秒前
如是之人发布了新的文献求助10
6秒前
6秒前
GGBOND完成签到,获得积分10
6秒前
鹿鹤完成签到,获得积分10
7秒前
7秒前
7秒前
如是之人发布了新的文献求助10
7秒前
如是之人发布了新的文献求助10
7秒前
腾腾发布了新的文献求助10
7秒前
刻苦惜霜完成签到,获得积分10
7秒前
8秒前
陶醉的土豆完成签到,获得积分10
8秒前
Keira完成签到,获得积分10
9秒前
NexusExplorer应助star采纳,获得10
9秒前
小橙完成签到,获得积分10
9秒前
9秒前
000发布了新的文献求助10
9秒前
小夜完成签到,获得积分10
10秒前
所所应助是苗苗丫采纳,获得10
10秒前
12秒前
12秒前
自律发布了新的文献求助10
13秒前
13秒前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100078
求助须知:如何正确求助?哪些是违规求助? 3637751
关于积分的说明 11527226
捐赠科研通 3346844
什么是DOI,文献DOI怎么找? 1839399
邀请新用户注册赠送积分活动 906727
科研通“疑难数据库(出版商)”最低求助积分说明 823934