分离器(采油)
图层(电子)
金属锂
锂(药物)
金属
材料科学
氢
化学工程
纳米技术
化学
工程类
冶金
有机化学
电解质
电极
热力学
物理化学
医学
物理
内分泌学
作者
Zhuqing Huang,Xingtao Qi,Hai Zhang,Liequan Liu,Ze Zhang,Zhenyu Yang,Junchao Wei
出处
期刊:Langmuir
[American Chemical Society]
日期:2025-04-12
标识
DOI:10.1021/acs.langmuir.5c00654
摘要
Lithium metal batteries (LMBs) face critical challenges due to uncontrolled lithium dendrite growth and inhomogeneous Li+ flux, largely attributed to conventional separators' poor interfacial compatibility. To address this, we propose a hydrogen bond-driven layer-by-layer (LbL) assembly strategy for engineering functional separators using poly(vinyl alcohol) (PVA) and tannic acid (TA). The optimized PP/(TA/PVA)15 separator leverages the synergistic interplay between PVA's hydroxyl groups and TA's carbonyl moieties, forming a robust hydrogen-bonded network that simultaneously enhances lithiophilicity, regulates Li+ flux uniformity, and immobilizes anions. The interfacial design achieves exceptional electrochemical performance: Li//Li symmetric cells maintain stable operation for 800 h at 0.5 mA cm-2/0.5 mAh cm-2, while Li//LiFePO4 half cells retain 73.8% capacity after 1000 cycles at 5C (decay rate: 0.026% per cycle). The separator further exhibits high ionic conductivity (0.94 mS cm-1) and Li+ transference number (0.63), outperforming conventional polyolefin counterparts. By integrating simplicity, scalability, and eco-friendliness, this work pioneers a universal interface chemistry paradigm for next-generation LMBs, offering transformative insights into separator engineering through molecular-level hydrogen-bonding control.
科研通智能强力驱动
Strongly Powered by AbleSci AI