亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi‐Strategy Fusion for Mobile Robot Path Planning via Dung Beetle Optimization

计算机科学 运动规划 粪甲虫 移动机器人 路径(计算) 融合 机器人 人机交互 分布式计算 人工智能 计算机网络 生态学 语言学 哲学 金龟子科 生物
作者
Junhu Peng,Tao Peng,Can Tang,Xingxing Xie
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (9-11)
标识
DOI:10.1002/cpe.70060
摘要

ABSTRACT In recent years, robot path planning has become a critical aspect of autonomous navigation, especially in dynamic and complex environments where robots must operate efficiently and safely. One of the primary challenges in this domain is achieving high convergence efficiency while avoiding local optimal solutions, which can hinder the robot's ability to find the best possible path. Additionally, ensuring that the robot follows a path with minimal turns and reduced path length is essential for enhancing operational efficiency and reducing energy consumption. These challenges become even more pronounced in high‐dimensional optimization tasks where the search space is vast and difficult to navigate. In this article, a multi‐strategy fusion enhanced dung beetle optimization algorithm (MIDBO) is introduced to tackle key challenges in robot path planning, such as slow convergence and the problem of local optima, and so on, in which MIDBO incorporates several key innovations to enhance performance and robustness. First, the Tent chaotic strategy is used to diversify initial solutions during population initialization, thereby mitigating the risk of local optima and improving global search capability. Second, a penalty term is integrated into the fitness function to penalize excessive turning angles, aiming to reduce the frequency and magnitude of turns. This modification results in smoother and more efficient paths with reduced lengths. Third, the inertia weight is adaptively updated by a sine‐based mechanism, which dynamically balances exploration and exploitation, accelerates convergence, and enhances algorithm stability. To further improve efficiency for path planning, the MIDBO integrates a Levy flight strategy and a local search mechanism to boost the search capability during the stealing phase, contributing to smoother and more practical paths planned for the robot. A series of thorough and reproducible experiments are performed using benchmark test functions to evaluate the performance of MIDBO in comparison to several leading metaheuristic algorithms. The results demonstrate that MIDBO achieves superior outcomes in path planning tasks with optimal and mean path lengths of 42.1068 and 44.4755, respectively, which significantly outperforms other algorithms including IPSO (47.6244, 55.9375), original DBO (47.6244, 55.9375), and ISSA (47.6244, 55.9375). MIDBO also markedly reduces the number of turns by achieving best and average values of 10 and 13.4, respectively, compared with IPSO (11, 16.1), original DBO (12, 15.3), and ISSA (12, 16.4). Besides, the consistent performance of MIDBO is confirmed via stability analysis based on the mean square error of path lengths and turn counts across 10 independent trials. For the high‐dimensional optimization tasks, MIDBO achieves 8 and 7 functions about top rankings on 50‐ and 100‐dimensional functions, and specifically MIDBO outperforms DBO, IPSO, and ISSA on 13, 18, and 11 functions, respectively. Therefore, the findings validate MIDBO is a competitive solution of path planning for mobile robot navigation with complex requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yanjun完成签到,获得积分10
1秒前
nicolaslcq完成签到,获得积分10
43秒前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
real发布了新的文献求助10
2分钟前
传奇3应助real采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
毛毛完成签到,获得积分10
3分钟前
4分钟前
Carsen完成签到,获得积分10
4分钟前
4分钟前
木头完成签到,获得积分10
4分钟前
KKandace完成签到,获得积分10
5分钟前
scm完成签到,获得积分10
6分钟前
6分钟前
iShine完成签到 ,获得积分10
6分钟前
real发布了新的文献求助10
6分钟前
NexusExplorer应助real采纳,获得10
6分钟前
光合作用完成签到,获得积分10
6分钟前
欢欢完成签到,获得积分10
7分钟前
MchemG应助科研通管家采纳,获得20
7分钟前
在水一方应助科研通管家采纳,获得10
7分钟前
牟白容完成签到,获得积分20
7分钟前
8分钟前
小小怪发布了新的文献求助10
8分钟前
9分钟前
zys发布了新的文献求助10
9分钟前
9分钟前
herococa完成签到,获得积分10
10分钟前
666完成签到,获得积分10
10分钟前
11分钟前
sino-ft完成签到,获得积分10
11分钟前
sino-ft发布了新的文献求助30
11分钟前
WWW完成签到 ,获得积分10
11分钟前
11分钟前
小小怪发布了新的文献求助30
11分钟前
666发布了新的文献求助10
12分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819947
求助须知:如何正确求助?哪些是违规求助? 3362824
关于积分的说明 10418846
捐赠科研通 3081184
什么是DOI,文献DOI怎么找? 1694991
邀请新用户注册赠送积分活动 814791
科研通“疑难数据库(出版商)”最低求助积分说明 768522