Toward automating GRADE classification: a proof-of-concept evaluation of an artificial intelligence-based tool for semiautomated evidence quality rating in systematic reviews

计算机科学 人工智能 机器学习 系统回顾 分级(工程) Python(编程语言) 科恩卡帕 客观性(哲学) 梅德林 工程类 程序设计语言 哲学 认识论 土木工程 政治学 法学
作者
Álisson Oliveira dos Santos,Viní­cius Silva Belo,Tales Mota Machado,Eduardo Sérgio da Silva
出处
期刊:BMJ evidence-based medicine [BMJ]
卷期号:: bmjebm-113123
标识
DOI:10.1136/bmjebm-2024-113123
摘要

Background Evaluation of the quality of evidence in systematic reviews (SRs) is essential for assertive decision-making. Although Grading of Recommendations Assessment, Development and Evaluation (GRADE) affords a consolidated approach for rating the level of evidence, its application is complex and time-consuming. Artificial intelligence (AI) can be used to overcome these barriers. Design Analytical experimental study. Objective The objective is to develop and appraise a proof-of-concept AI-powered tool for the semiautomation of an adaptation of the GRADE classification system to determine levels of evidence in SRs with meta-analyses compiled from randomised clinical trials. Methods The URSE-automated system was based on an algorithm created to enhance the objectivity of the GRADE classification. It was developed using the Python language and the React library to create user-friendly interfaces. Evaluation of the URSE-automated system was performed by analysing 115 SRs from the Cochrane Library and comparing the predicted levels of evidence with those generated by human evaluators. Results The open-source URSE code is available on GitHub ( http://www.github.com/alisson-mfc/urse ). The agreement between the URSE-automated GRADE system and human evaluators regarding the quality of evidence was 63.2% with a Cohen’s kappa coefficient of 0.44. The metrics of the GRADE domains evaluated included accuracy and F1-scores, which were 0.97 and 0.94 for imprecision (number of participants), 0.73 and 0.7 for risk of bias, 0.9 and 0.9 for I 2 values (heterogeneity) and 0.98 and 0.99 for quality of methodology (A Measurement Tool to Assess Systematic Reviews), respectively. Conclusion The results demonstrate the potential use of AI in assessing the quality of evidence. However, in consideration of the emphasis of the GRADE approach on subjectivity and understanding the context of evidence production, full automation of the classification process is not opportune. Nevertheless, the combination of the URSE-automated system with human evaluation or the integration of this tool into other platforms represents interesting directions for the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
困困包发布了新的文献求助10
2秒前
Jasper应助Philce采纳,获得10
2秒前
我是老大应助火123aa采纳,获得10
3秒前
Lucas应助JKL采纳,获得10
3秒前
zhan发布了新的文献求助10
3秒前
阿托品完成签到,获得积分10
4秒前
小吴同学完成签到,获得积分10
5秒前
星辰大海应助一叶知秋采纳,获得10
5秒前
麦当劳信徒完成签到,获得积分10
6秒前
6秒前
酷炫翠桃应助小九采纳,获得10
6秒前
7秒前
李洛洛完成签到,获得积分10
9秒前
阳光的玉米完成签到,获得积分10
11秒前
TH发布了新的文献求助10
11秒前
pcr163应助幸福妙柏采纳,获得50
11秒前
12秒前
12秒前
萧卿与发布了新的文献求助30
12秒前
王灿灿发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
耍酷亦玉应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
自然而然应助郭书磊采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得20
14秒前
Akim应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
CR7应助科研通管家采纳,获得20
14秒前
科目三应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
聪慧小霜应助科研通管家采纳,获得10
15秒前
走四方应助科研通管家采纳,获得50
15秒前
15秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930537
求助须知:如何正确求助?哪些是违规求助? 3475376
关于积分的说明 10986961
捐赠科研通 3205514
什么是DOI,文献DOI怎么找? 1771532
邀请新用户注册赠送积分活动 859051
科研通“疑难数据库(出版商)”最低求助积分说明 796913