The Taylor flow characteristic and mass transfer in curved T-microchannels

物理 机械 流量(数学) 传质 流体力学 泰勒分散 经典力学 热力学 扩散
作者
Qingyu Li,Juanjuan Qiao,Guichao Wang,Songying Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0252466
摘要

Mass transfer processes in curved microchannels are challenging to measure due to the complex flow structures induced by curved geometries. This study systematically investigates Taylor flow and mass transfer mechanisms in curved T-microchannels using visualization experiments and numerical simulations. Three primary Taylor flow patterns—slug flow, long slug flow, and columnar flow—are observed. A slug length prediction model is developed based on the dispersed phase Reynolds number and the continuous phase capillary number. Comparisons of flow fields in different curved microchannels reveal that curvature effectively disrupts the symmetric internal circulation within the slug, shifting it toward the slug head and splitting it into multiple secondary circulations. This disruption enhances radial mixing and mass transfer within the slug. By introducing mixing efficiency and the Dean number, this study quantifies the influence of channel curvature radius, number of bends, and two-phase flow velocity on flow enhancement and mass transfer. Results indicate that smaller curvature radii, a greater number of bends, and higher dispersed phase volume fractions intensify secondary flow within the channel cross section, thereby promoting mass transfer. Additionally, pressure drop measurement demonstrates that microchannels with more bends and smaller curvature radii correspond to higher energy dissipation. Based on comprehensive numerical and experimental results, a broadly applicable and highly accurate mass transfer prediction model is established using the Dean number, two-phase Reynolds number, and dispersed phase capillary number. This study provides theoretical guidance for optimizing microchannel designs and furthering the application of microchannel reactors in fine chemical processes and related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐靳完成签到 ,获得积分10
刚刚
田様应助zxj采纳,获得10
刚刚
刚刚
所所应助oneday采纳,获得20
刚刚
科研通AI5应助lifeboast采纳,获得10
1秒前
zzzyc发布了新的文献求助10
1秒前
Lucas应助奶冻采纳,获得10
2秒前
fusheng发布了新的文献求助10
3秒前
所所应助song采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
哇咔咔完成签到,获得积分10
6秒前
6秒前
zsl完成签到,获得积分10
7秒前
7秒前
打打应助佳丽采纳,获得10
7秒前
7秒前
8秒前
萌酱完成签到,获得积分10
8秒前
Clover发布了新的文献求助10
9秒前
9秒前
勘大山发布了新的文献求助10
9秒前
samantha完成签到,获得积分10
9秒前
10秒前
欣喜若魔完成签到,获得积分10
10秒前
多乐多滋完成签到,获得积分10
10秒前
10秒前
一一一发布了新的文献求助10
11秒前
加油呀完成签到,获得积分10
12秒前
12秒前
zxj发布了新的文献求助10
12秒前
mieheihei完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
JamesPei应助0_0采纳,获得10
15秒前
16秒前
木叶发布了新的文献求助10
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836546
求助须知:如何正确求助?哪些是违规求助? 3378807
关于积分的说明 10506358
捐赠科研通 3098571
什么是DOI,文献DOI怎么找? 1706572
邀请新用户注册赠送积分活动 821075
科研通“疑难数据库(出版商)”最低求助积分说明 772431