Investigation of Charge Transfer Kinetics in Multilayer PEO/LLZO Solid-State Batteries

材料科学 动力学 固态 电荷(物理) 化学工程 纳米技术 化学物理 工程物理 物理 量子力学 工程类
作者
Bryce A. Tappan,Katrin Geng,Daniele Vivona,Daniel Wang,David Mankus,Abigail K. R. Lytton‐Jean,Dominic Bresser,Yang Shao‐Horn
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:2
标识
DOI:10.1021/acsami.4c21180
摘要

Lithium–metal batteries employing solid electrolytes (ceramics or polymers) could surpass the energy and power densities of current state-of-the-art lithium-ion batteries. Unfortunately, ceramic electrolyte/electrode interfaces suffer from poor interfacial contact, and polymer electrolytes show insufficient ionic conductivities for practical uses. Composite solid electrolytes, comprised of mixtures of ceramic and polymer electrolytes, could mitigate these challenges by combining high ionic conductivity with good interfacial contact. However, it is imperative to understand the kinetics of charge transfer at interfaces in composite solid electrolytes, as these can drastically affect the overall ion transport properties of such electrolytes. Here, we design a systematic study of charge transfer kinetics using multilayer LLZO/PEO (tantalum-doped lithium lanthanum zirconium oxide and poly(ethylene oxide)) solid electrolyte architectures as model systems for composite electrolytes. Electrochemical impedance spectroscopy and DC polarization measurements highlight the nonlinear charge transfer kinetics at Li/PEO as well as PEO/LLZO interfaces and show that charge transfer kinetics at each of these interfaces is limited by ion transfer in accordance with a Butler–Volmer model that incorporates a film resistance term. In addition, slow ion transport through the solid electrolyte interphase at Li/PEO interfaces and through contamination layers at LLZO/PEO interfaces are dominant sources of impedance, the latter of which can be significantly mitigated by decreasing interfacial contaminants through a high-temperature (700 °C) heat treatment of LLZO prior to battery assembly. These results provide new insights into the charge transfer kinetics at interfaces in multilayer and composite solid-state batteries and support the future design thereof.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juliar发布了新的文献求助10
1秒前
彩色帽子完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
3秒前
撒旦撒完成签到,获得积分10
4秒前
4秒前
浏阳河发布了新的文献求助10
4秒前
Lou发布了新的文献求助10
5秒前
大太阳发布了新的文献求助10
6秒前
6秒前
7秒前
清风发布了新的文献求助200
7秒前
8秒前
9秒前
eric完成签到,获得积分10
9秒前
古月完成签到,获得积分10
11秒前
11秒前
赘婿应助paojiao不辣采纳,获得10
11秒前
12秒前
小二郎应助研友_Z11ONZ采纳,获得10
12秒前
13秒前
善学以致用应助浏阳河采纳,获得10
13秒前
陈老太完成签到 ,获得积分10
14秒前
母广明完成签到,获得积分10
14秒前
迷路凌柏发布了新的文献求助10
14秒前
聪慧的小伙完成签到,获得积分10
14秒前
14秒前
多情方盒完成签到,获得积分10
15秒前
hebilie完成签到,获得积分10
15秒前
悄悄完成签到,获得积分10
15秒前
李佳烨发布了新的文献求助20
15秒前
核桃应助大太阳采纳,获得10
16秒前
cheng完成签到,获得积分10
18秒前
18秒前
xxx完成签到 ,获得积分10
18秒前
19秒前
19秒前
xjy完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4400110
求助须知:如何正确求助?哪些是违规求助? 3887831
关于积分的说明 12100440
捐赠科研通 3532117
什么是DOI,文献DOI怎么找? 1938289
邀请新用户注册赠送积分活动 979179
科研通“疑难数据库(出版商)”最低求助积分说明 876411