已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recurrent Diffusion for 3D Point Cloud Generation from a Single Image

计算机科学 计算机视觉 图像处理 云计算 人工智能 点云 扩散 图像(数学) 物理 热力学 操作系统
作者
Yan Zhou,Dewang Ye,Huaidong Zhang,Xuemiao Xu,Huajie Sun,Yufan Xu,Xiangyu Liu,Yuexia Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3539935
摘要

Single-image 3D shape reconstruction has attracted significant attention with the advance of generative models. Recent studies have utilized diffusion models to achieve unprecedented shape reconstruction quality. However, these methods, in each sampling step, perform denoising in a single forward pass, leading to cumulative errors that severely impact the geometric consistency of the generated shapes with the input targets and face difficulties in reconstructing rich details of complex 3D shapes. Moreover, the performance of current works suffers significant degradation due to limited information when only a single image is used as input during testing, further affecting the quality of 3D shape generation. In this paper, we present a recurrent diffusion framework, aiming to improve generation performance during single image-to-shape inference. Diverging from denoising in a single forward pass, we recursively refine the noise prediction in a self-rectified manner with the explicit guidance of the input target, thereby markedly suppressing cumulative errors and improving detail modeling. To enhance the geometric perception ability of the network during single-image inference, we further introduce a multi-view training scheme equipped with a view-robust conditional generation mechanism, which effectively promotes generation quality even when only a single image is available during inference. The effectiveness of our method is demonstrated through extensive evaluations on two public 3D shape datasets, where it surpasses state-of-the-art methods both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WindDreamer完成签到,获得积分10
4秒前
pysa完成签到,获得积分10
6秒前
azhou176完成签到,获得积分10
8秒前
梁嘉琦发布了新的文献求助10
9秒前
XRWei完成签到,获得积分10
9秒前
Bighen完成签到 ,获得积分0
13秒前
Ethanyoyo0917完成签到,获得积分10
16秒前
善学以致用应助zrm采纳,获得30
16秒前
Cylair完成签到,获得积分10
16秒前
宗语雪完成签到,获得积分10
18秒前
yangjoy完成签到 ,获得积分10
18秒前
qkren完成签到,获得积分10
19秒前
XRWei发布了新的文献求助10
22秒前
科研通AI5应助漂亮寻云采纳,获得10
23秒前
充电宝应助qiao采纳,获得10
24秒前
梁嘉琦完成签到,获得积分10
25秒前
核动力驴完成签到 ,获得积分10
25秒前
李小强完成签到 ,获得积分10
26秒前
11222222完成签到 ,获得积分10
27秒前
务实的焦完成签到 ,获得积分10
29秒前
Veronica Mew完成签到 ,获得积分10
29秒前
31秒前
33秒前
弓仪长发布了新的文献求助10
35秒前
端庄洪纲完成签到 ,获得积分10
35秒前
晚意完成签到 ,获得积分10
36秒前
小蘑菇应助LBQ采纳,获得10
36秒前
39秒前
kelien1205完成签到 ,获得积分10
39秒前
energyharvester完成签到 ,获得积分10
40秒前
蒋文辉完成签到,获得积分10
41秒前
42秒前
简简单单完成签到 ,获得积分10
42秒前
akakns完成签到 ,获得积分10
43秒前
心灵美的笑卉完成签到,获得积分10
46秒前
zrm发布了新的文献求助30
46秒前
47秒前
48秒前
nicholasgxz完成签到,获得积分10
48秒前
刘秀完成签到 ,获得积分10
48秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367233
关于积分的说明 10444697
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698047
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848