小RNA
生物
非生物胁迫
计算生物学
非生物成分
细胞生物学
生物技术
基因
遗传学
生态学
作者
Xi Zhao,Yang Jia,Haiyan Wang,Haidong Xu,Yuyi Zhou,Liusheng Duan
摘要
ABSTRACT Plant growth and development are governed by a rigorously timed sequence of ontogenetic programmes. MicroRNAs (miRNAs), a class of short noncoding RNAs, function as master regulators of gene expression by targeting mRNAs for cleavage or direct translational inhibition at the posttranscriptional level in eukaryotes. Numerous miRNA molecules that control significant agronomic properties in plants have been found. On the one hand, miRNAs target transcription factors (TFs) to determine plant structure, such as root development, internode elongation, leaf morphogenesis, sex determination and nutrient transition. On the other hand, miRNAs alter expression levels to adapt to biological and abiotic stresses, including fungi, bacteria, viruses, drought, waterlogging, high temperature, low temperature, salinity, nutrient deficiencies, heavy metals and other abiotic stresses. To fully understand the role of miRNAs in plants, we review the regulatory role of miRNAs in plant development and stress resistance. Beyond that, we propose that the novel miRNA in review can be effectively further studied with artificial miRNA (amiRNA) or short tandem target mimics (STTM) and miRNA delivery in vitro can be used to improve crop yield and agricultural sustainability.
科研通智能强力驱动
Strongly Powered by AbleSci AI