Multi-Scale Crack Detection and Quantification of Concrete Bridges Based on Aerial Photography and Improved Object Detection Network

航空摄影 比例(比率) 摄影 计算机科学 目标检测 结构工程 人工智能 工程类 遥感 地质学 模式识别(心理学) 地理 地图学 艺术 视觉艺术
作者
Liming Zhou,Haowen Jia,Shang Jiang,Fei Xu,Hao Tang,Chao Xiang,Guoqing Wang,Hemin Zheng,Lingkun Chen
出处
期刊:Buildings [MDPI AG]
卷期号:15 (7): 1117-1117 被引量:2
标识
DOI:10.3390/buildings15071117
摘要

Regular crack detection is essential for extending the service life of bridges. However, the image data collected during bridge crack inspections are complex to convert into physical information and construct intuitive and comprehensive Three-Dimensional (3D) models incorporating crack information. An intelligent crack detection method for bridge surface damage based on Unmanned Aerial Vehicles (UAVs) is proposed for these challenges, incorporating a three-stage detection, quantification, and visualization process. This method enables automatic crack detection, quantification, and localization in a 3D model, generating a bridge model that includes crack details and distribution. The key contributions of this method are as follows: (1) The DCN-BiFPN-EMA-YOLO (DBE-YOLO) crack detection network is introduced, which improves the model’s ability to extract crack features from complex backgrounds and enhances its multi-scale detection capability for accurate detection; (2) a more comprehensive crack quantification method is proposed, integrating the crack automation detection system for accurate crack quantification and efficient processing; (3) crack information is mapped onto the 3D model by computing the camera pose for each image in the 3D model for intuitive crack visualization. Experimental results from tests on a concrete beam and an urban bridge demonstrate that the proposed method accurately identifies and quantifies crack images captured by UAVs. The DBE-YOLO network achieves an accuracy of 96.79% and an F1 score of 88.51%, improving accuracy by 3.19% and the F1 score by 3.8% compared to the original model. The quantification accuracy is within 10% of the error margin of traditional manual inspection. A 3D bridge model was also constructed and integrated with crack information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的铁身完成签到,获得积分10
刚刚
bai发布了新的文献求助10
刚刚
葉落葉飄完成签到,获得积分10
1秒前
1秒前
wuming完成签到,获得积分10
2秒前
2秒前
刘奕欣完成签到 ,获得积分20
3秒前
dangziutiu完成签到 ,获得积分10
4秒前
发光且犯二完成签到,获得积分10
5秒前
6秒前
之贻发布了新的文献求助10
6秒前
LordRedScience完成签到,获得积分10
7秒前
星辰大海应助llyu采纳,获得10
7秒前
不安晓曼完成签到 ,获得积分10
7秒前
murphy完成签到,获得积分10
7秒前
8秒前
大模型应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
changping应助科研通管家采纳,获得10
11秒前
迷路雨寒应助科研通管家采纳,获得100
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
木瓜应助科研通管家采纳,获得10
11秒前
及禾应助科研通管家采纳,获得40
11秒前
anan应助科研通管家采纳,获得10
11秒前
fyattojsk应助科研通管家采纳,获得50
11秒前
dew应助科研通管家采纳,获得10
12秒前
laber应助科研通管家采纳,获得50
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
szy完成签到,获得积分10
12秒前
Ava应助苏州河采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
圆锥香蕉应助科研通管家采纳,获得30
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
温婉的曼冬完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305228
求助须知:如何正确求助?哪些是违规求助? 4451442
关于积分的说明 13851999
捐赠科研通 4338808
什么是DOI,文献DOI怎么找? 2382221
邀请新用户注册赠送积分活动 1377318
关于科研通互助平台的介绍 1344678