人工智能
计算机科学
深度学习
管道(软件)
依赖关系(UML)
机器学习
组分(热力学)
机制(生物学)
认知
临床实习
工作(物理)
数据科学
软件
作者
Kassem Anis Bouali,Elena Šikudová
标识
DOI:10.1016/j.jbi.2025.104929
摘要
Our work introduces four contributions: (1) a cost-effective pipeline for generating synthetic ROCF data, reducing dependency on clinical datasets; (2) a domain-agnostic model for automated ROCF scoring across diverse drawing styles; (3) a lightweight attention mechanism aligning model decisions with clinical scoring for transparency; and (4) a bias-aware framework using synthetic data to reduce demographic disparities, promoting fair cognitive assessment across populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI