峰度
唾液腺
动态增强MRI
磁共振成像
对比度(视觉)
动态对比度
磁共振弥散成像
医学
病理
放射科
计算机科学
人工智能
统计
数学
作者
J. Yu,Huan Yang,Ning Zheng,Shuo Shao
摘要
Abstract Objective This study aimed to evaluate the diagnostic ability of relative values of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion kurtosis imaging (DKI) quantitative parameters for salivary gland tumors (SGTs). Methods A total of 107 patients with histopathologically confirmed SGTs (18 malignant [MTs], 38 pleomorphic adenomas [PAs], 31 Warthin tumors [WTs], 20 basal cell adenomas [BCAs]) underwent MRI with DKI and DCE-MRI sequences. Quantitative parameters included DCE-MRI-derived volume transfer constant (Ktrans), rate constant (Kep), fractional volume of the extravascular-extracellular space (Ve), plasma fraction (Vp), and DKI-derived mean kurtosis (MK) and mean diffusion (MD).The receiver operating characteristic (ROC) curve were used for statistical analysis. Statistical significance was set at P < 0.05. Results PAs exhibited the lowest MK (0.49 ± 0.15) among all groups (P < 0.05). Compared to WTs, PAs showed lower Kep (366.89[260.06, 568.32]×10-³ min−1), higher MD (2.02 ± 0.42 × 10-³ mm2/s), and higher Ve (551.83[388.10, 883.19]×10-³). PAs also displayed higher Ve, lower Kep, and lower Vp (85.42[20.53, 332.72])×10-³) than BCAs, and lower Vp with higher Ve than MTs (all P < 0.05). WTs had significantly lower Ve (218.86[142.07, 341.76]×10-³) than MTs (P = 0.001). BCAs demonstrated lower MK (0.61 ± 0.23) and higher MD (1.97 ± 0.44 × 10-³ mm2/s) compared to WTs and MTs (P < 0.05), alongside lower Ktrans (355.25[211.88, 506.92]×10-³ min−1) and Ve (380.89[271.28, 589.53]×10-³) than WTs (P < 0.05). Logistic regression analysis revealed enhanced discrimination: MK+Ve (AUC = 0.895) and MK+MD+Ve+Kep (AUC = 0.936) differentiated PAs from WTs; Kep+Vp+Ve distinguished PAs from BCAs (AUC = 0.843); MD+MK+Vp separated PAs from MTs (AUC = 0.854); Ktrans+MK differentiated WTs from BCAs (AUC = 0.856). Conclusion DKI and DCE-MRI parameters complement each other, enabling accurate SGT subtype differentiation. Combined use of these parameters achieves high diagnostic accuracy, and a stepwise diagnostic flowchart was designed to facilitate systematic discrimination among the four tumor types.
科研通智能强力驱动
Strongly Powered by AbleSci AI