亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Consistent Image Layout Editing With Diffusion Models

作者
Tao Xia,Yudi Zhang,Ting Liu,Lei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 6978-6992
标识
DOI:10.1109/tip.2025.3623869
摘要

Despite the great success of large-scale text-to-image diffusion models in image generation and image editing, existing methods still struggle with editing the layout of real-world images. Although a few works have been developed to address this issue, they either fail to adjust the image layout effectively or encounter challenges in preserving the visual appearance of objects after layout adjustment. To bridge this gap, this paper proposes a novel image layout editing method that not only re-arranges a real-world image to a specified layout, but also ensures that the visual appearance of the objects remains consistent with their original state prior to editing. Concretely, a Multi-Concept Learning scheme is developed to learn the concepts of different objects from a single image, which can be seen as a novel inversion scheme tailored for image layout editing. Then, we leverage the semantic consistency within intermediate features of diffusion models to project the appearance information of objects to the target regions to improve the fidelity of objects after editing. Additionally, a novel initialization noise design is adopted to facilitate the convergence and success rate of re-arranging the layout. The phenomenon of concept entanglement is also analyzed, and resolved by a novel asynchronous editing strategy. Extensive experimental results demonstrate that the proposed method outperforms existing methods in both layout alignment and visual consistency for the task of image layout editing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
李健的小迷弟应助justin采纳,获得10
8秒前
十三发布了新的文献求助10
8秒前
12秒前
17秒前
Owen应助的基督教采纳,获得10
17秒前
科研通AI6应助cjsz_kiteng采纳,获得10
17秒前
先点菜吧发布了新的文献求助10
17秒前
乐研客完成签到 ,获得积分10
19秒前
justin发布了新的文献求助10
20秒前
木齐Jay完成签到,获得积分10
20秒前
24秒前
GingerF应助自信的坤采纳,获得50
29秒前
31秒前
研友_VZG7GZ应助沅沅采纳,获得10
31秒前
Nicole完成签到 ,获得积分10
33秒前
仰勒完成签到 ,获得积分10
35秒前
FashionBoy应助清如止水采纳,获得10
36秒前
虎正凯完成签到 ,获得积分10
39秒前
40秒前
Yikao完成签到 ,获得积分10
45秒前
Wuyt应助沅沅采纳,获得10
46秒前
justin完成签到,获得积分10
49秒前
我爱科研发布了新的文献求助20
53秒前
科研通AI6应助Bressanone采纳,获得10
1分钟前
binghe完成签到,获得积分10
1分钟前
堃kun发布了新的文献求助10
1分钟前
科研通AI6应助cjsz_kiteng采纳,获得10
1分钟前
先点菜吧完成签到,获得积分10
1分钟前
VDC发布了新的文献求助10
1分钟前
小滕同学完成签到 ,获得积分10
1分钟前
1分钟前
beiwei完成签到 ,获得积分10
1分钟前
1分钟前
Julie完成签到 ,获得积分10
1分钟前
天真台灯完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
大胆诗云应助我爱科研采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522524
求助须知:如何正确求助?哪些是违规求助? 4613455
关于积分的说明 14538852
捐赠科研通 4551182
什么是DOI,文献DOI怎么找? 2494046
邀请新用户注册赠送积分活动 1475051
关于科研通互助平台的介绍 1446438