A novel quality-related generative data-driven fault diagnosis method for complex industrial processes with incomplete data

作者
Muhammad Asfandyar Shahid,Xueyi Zhang,Xin Qin,Kaixiang Peng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (10): 106218-106218
标识
DOI:10.1088/1361-6501/ae09c3
摘要

Abstract Spatiotemporal incomplete data pose significant challenges to the robust diagnosis of quality-related faults in complex industrial environments. Missing data, often attributed to sensor failures, communication issues, or storage limitations, can compromise the reliability of diagnostic systems and diminish the effectiveness of conventional fault detection methods. To address these challenges, this paper proposes a novel integrated framework combining a generative quality-aware (QA) generative adversarial imputation network (GAIN)-based imputation with a graph-based spatiotemporal transformer encoder, a broad learning system (BLS) classifier and an enhanced uncertainty estimation mechanism. Compared to the standard GAIN, our proposed QA-GAIN incorporates a specific quality indicator into adversarial training, reducing the root mean square error (RMSE) by 23%–53% across missing rates of 10%–80% compared to traditional imputation methods. For downstream monitoring, the spatiotemporal transformer with graph convolution and uncertainty weighting reduces Hotelling’s T 2 false alarm rate (FAR) by up to 27% and improves the fault detection rate (FDR) by up to 15% compared to transformer-based baseline models under severe missingness. The BLS-inspired classifier uses latent features efficiently to enhance decision boundaries, while uncertainty calibration shows up to 64% lower expected calibration error (ECE) than standard Monte Carlo (MC) dropout, providing more reliable probability estimates and higher confidence in correct predictions. Evaluations on the steel industry hot strip mill process (HSMP) and the chemical industry Tennessee Eastman process (TEP) datasets confirm the proposed framework’s ability to recover missing data, understand spatiotemporal patterns and deliver strong and trustworthy predictions for quality-related fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ccz完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
Ava应助光头二师兄采纳,获得10
1秒前
万能图书馆应助蓦回采纳,获得10
1秒前
慕青应助H2CO3采纳,获得10
2秒前
4秒前
幸福糖豆发布了新的文献求助10
4秒前
及禾完成签到,获得积分0
4秒前
4秒前
呆萌芙蓉发布了新的文献求助10
5秒前
if完成签到 ,获得积分10
5秒前
大雄完成签到,获得积分10
6秒前
Sew东坡完成签到,获得积分10
8秒前
予秋发布了新的文献求助10
8秒前
9秒前
春日遛狗完成签到,获得积分10
9秒前
慕青应助幸福糖豆采纳,获得10
9秒前
10秒前
刘威完成签到,获得积分10
10秒前
14秒前
桃桃乌龙完成签到,获得积分10
15秒前
ask发布了新的文献求助10
15秒前
洋洋羊发布了新的文献求助10
16秒前
16秒前
16秒前
小青椒应助轻松水壶采纳,获得30
16秒前
凶狠的璎发布了新的文献求助20
18秒前
生动谷蓝发布了新的文献求助10
19秒前
20秒前
ShiyuZhang完成签到,获得积分10
21秒前
22秒前
张钰完成签到 ,获得积分10
23秒前
Zr完成签到,获得积分10
25秒前
凄惨惨戚完成签到,获得积分10
26秒前
26秒前
大西瓜发布了新的文献求助10
27秒前
朱欣宇完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417106
求助须知:如何正确求助?哪些是违规求助? 4533161
关于积分的说明 14138339
捐赠科研通 4449179
什么是DOI,文献DOI怎么找? 2440630
邀请新用户注册赠送积分活动 1432477
关于科研通互助平台的介绍 1409873