Self-organization and emergence of memory in a cyclically driven elastoplastic model of an amorphous solid

作者
Dheeraj Kumar,Muhittin Mungan,Sylvain Patinet,M. Mert Terzi,Damien Vandembroucq
出处
期刊:Physical review [American Physical Society]
卷期号:112 (3): 035411-035411 被引量:1
标识
DOI:10.1103/nytl-pnfm
摘要

The mechanical behavior of disordered materials, such as dense suspensions, glasses, and granular materials, depends on their thermal and mechanical history. Under periodic driving, these materials can evolve into states that encode a memory of their annealing. Such memory effects have been observed experimentally in systems ranging from sheared non-Brownian suspensions to crumpled elastic sheets and in atomistic simulations. Here, we show that a quenched mesoscopic elastoplastic model of a sheared amorphous solid reproduces the phenomena of self-organization and memory formation under mechanical annealing. We analyze sample-to-sample fluctuations under readout protocols and demonstrate their connection to the irreversibility transition. Our model allows us to understand in detail the mechanical processes underlying memory formation. We find that annealing by cyclic shear leads to the self-organization of plasticity, which can be characterized by a density of local mechanical stress thresholds. These thresholds exhibit anisotropy, depending on their alignment with the driving direction. The interplay between these thresholds dictates how the driving history-particularly its direction and amplitude-is imprinted into the material's local structure. We develop readout protocols capable of accessing both the amplitude and the direction of the mechanical training. Our findings can be understood within the framework of return point memory which emerges as a result of mechanical annealing. Building on this, we develop a Preisach-like model of directional memory that describes well our numerical results. We conclude with a discussion of similarities of the evolution of plasticity under mechanical annealing and adaptive evolution in changing environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乔乔发布了新的文献求助10
1秒前
1秒前
miemiemie94发布了新的文献求助10
1秒前
1秒前
无奈又晴发布了新的文献求助10
1秒前
小二郎应助老实的水蜜桃采纳,获得10
1秒前
久违完成签到,获得积分10
1秒前
脉动完成签到,获得积分10
2秒前
2秒前
2秒前
Menahemxie完成签到,获得积分10
2秒前
3秒前
3秒前
Jasper应助cchenn采纳,获得10
3秒前
落水鎏情发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
美好斓发布了新的文献求助30
4秒前
今后应助英俊001采纳,获得10
5秒前
llh发布了新的文献求助10
5秒前
gyx发布了新的文献求助10
5秒前
意义发布了新的文献求助10
5秒前
满意富完成签到,获得积分10
6秒前
6秒前
JamesPei应助羊儿采纳,获得10
6秒前
shuaideyapi完成签到,获得积分10
6秒前
Menahemxie发布了新的文献求助10
6秒前
大力荷花发布了新的文献求助10
6秒前
我是老大应助田攀采纳,获得10
6秒前
隐形曼青应助何必在乎采纳,获得10
6秒前
Hello应助amanda采纳,获得10
7秒前
7秒前
等待的谷波完成签到 ,获得积分10
7秒前
脉动发布了新的文献求助10
7秒前
机智热狗发布了新的文献求助10
8秒前
xxxxxx发布了新的文献求助10
8秒前
灵巧冰露发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238