Resilient odometry via hierarchical adaptation

作者
Shibo Zhao,Sifan Zhou,Yuchen Zhang,Ji Zhang,Chen Wang,Wenshan Wang,Sebastian Scherer
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:10 (109): eadv1818-eadv1818
标识
DOI:10.1126/scirobotics.adv1818
摘要

Resilient and robust odometry is crucial for autonomous systems operating in complex and dynamic environments. Existing odometry systems often struggle with severe sensory degradations and extreme conditions such as smoke, sandstorms, snow, or low-light conditions, threatening both the safety and functionality of robots. To address these challenges, we present Super Odometry, a sensor fusion framework that dynamically adapts to varying levels of environmental degradation. Super Odometry uses a hierarchical structure to integrate four core modules from lower-level to higher-level adaptability, including adaptive feature selection, adaptive state direction selection, adaptive engine selection, and a learning-based inertial odometry. The inertial odometry, trained on more than 100 hours of heterogeneous robotic platforms, captures comprehensive motion dynamics. Super Odometry elevates the inertial measurement unit to equal importance with camera and light detection and ranging (LiDAR) systems in the sensor fusion framework, providing a reliable fallback when exteroceptive sensors fail. Super Odometry has been validated across 200 kilometers and 800 operational hours on a fleet of aerial, wheeled, and legged robots and under diverse sensor configurations, environmental degradation, and aggressive motion profiles. It marks an important step toward safe and long-term robotic autonomy in all-degraded environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布噜布噜完成签到,获得积分10
1秒前
tianqiang发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
桉豆发布了新的文献求助10
4秒前
4秒前
WRZ完成签到 ,获得积分10
4秒前
研友_ZlqeD8完成签到,获得积分10
5秒前
李cq发布了新的文献求助10
5秒前
Allonz发布了新的文献求助10
5秒前
激昂的梦琪完成签到,获得积分10
7秒前
7秒前
996007发布了新的文献求助10
7秒前
潇洒一曲完成签到,获得积分10
7秒前
7秒前
骆沉星完成签到,获得积分20
8秒前
8秒前
Trey发布了新的文献求助10
9秒前
Mao发布了新的文献求助50
9秒前
大侠完成签到 ,获得积分10
9秒前
kyle发布了新的文献求助10
10秒前
stevenli发布了新的文献求助50
10秒前
英俊的铭应助hyt采纳,获得10
10秒前
IMIke完成签到,获得积分10
11秒前
12秒前
嘿嘿应助一只小学弱采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
Akim应助莱因哈特别着急采纳,获得10
12秒前
yan完成签到 ,获得积分10
12秒前
12秒前
123zyx发布了新的文献求助10
12秒前
SGOM发布了新的文献求助10
12秒前
希望天下0贩的0应助Lylin采纳,获得10
12秒前
十三完成签到,获得积分10
13秒前
13秒前
Tonson举报不错吧求助涉嫌违规
14秒前
乐乐应助姚夏采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469034
求助须知:如何正确求助?哪些是违规求助? 4572251
关于积分的说明 14334549
捐赠科研通 4499069
什么是DOI,文献DOI怎么找? 2464895
邀请新用户注册赠送积分活动 1453435
关于科研通互助平台的介绍 1427961