Recursive variational mode decomposition enhanced by orthogonalization algorithm for accurate structural modal identification

正交化 算法 希尔伯特-黄变换 情态动词 模式(计算机接口) 希尔伯特变换 分解法(排队论) 数学 模态分析 模态试验 计算机科学 工程类 白噪声 有限元法 结构工程 光谱密度 高分子化学 操作系统 统计 化学 离散数学
作者
Xu-Qiang Shang,Tianli Huang,Hua-Peng Chen,Wei‐Xin Ren,Menglin Lou
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:197: 110358-110358 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110358
摘要

Modal identification is critical for structural condition monitoring. Variational mode decomposition (VMD) has been widely applied to identify modal parameters and has achieved excellent performance. It is crucial for VMD to predefine the decomposition parameters, that is, the mode number and balance factor. However, in practical engineering, abnormal impulses and heavy noise render it difficult to preset the mode number and balance factor. Therefore, a novel method, termed orthogonal and recursive VMD (ORVMD), is proposed to overcome the difficulty of setting decomposition parameters in advance. ORVMD consists of two components: recursive VMD (RVMD) and a rough-to-precise decomposition scheme based on an orthogonal algorithm. RVMD is an iterative method of VMD that is used to circumvent the difficulty of predefining the mode number. A rough-to-precise decomposition scheme based on an orthogonal algorithm is proposed to address the difficulty of setting the balance factor. Furthermore, the proposed ORVMD in combination with the Hilbert transform (HT) is employed to estimate the modal parameters of the structures. The raw signals are pre-processed by using the random decrement technique (RDT) to obtain its random decrement signature (RDS) and then the proposed method is applied to the RDS to identify the modal parameters of a simulated system and a real arch bridge. The obtained results show that the proposed method outperforms other existing methods in separating multicomponent signals; thus, it is an efficient method for identifying the natural frequencies and damping ratios of structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
long完成签到,获得积分10
3秒前
科研通AI5应助2333采纳,获得10
4秒前
脑洞疼应助千山孤风采纳,获得10
6秒前
华仔应助Zhang采纳,获得10
6秒前
6秒前
nice完成签到,获得积分20
6秒前
科研通AI5应助小小脸采纳,获得10
8秒前
9秒前
shufessm完成签到,获得积分0
10秒前
科研通AI5应助高小絮采纳,获得10
11秒前
十七发布了新的文献求助10
11秒前
医学小王完成签到 ,获得积分10
12秒前
12秒前
13秒前
dada发布了新的文献求助10
15秒前
赘婿应助two采纳,获得15
15秒前
所所应助jin采纳,获得10
16秒前
科研兄发布了新的文献求助10
16秒前
朴实的哈密瓜数据线完成签到,获得积分10
16秒前
聪明灵阳发布了新的文献求助10
17秒前
20秒前
20秒前
21秒前
22秒前
lmj717完成签到,获得积分10
23秒前
23秒前
良辰美景完成签到 ,获得积分10
24秒前
24秒前
小木林发布了新的文献求助10
26秒前
26秒前
27秒前
小小脸发布了新的文献求助10
28秒前
斯文败类应助1212采纳,获得10
28秒前
2333发布了新的文献求助10
29秒前
乐乐应助tao采纳,获得10
29秒前
阿诺德发布了新的文献求助10
29秒前
30秒前
31秒前
今后应助大大的DY采纳,获得50
32秒前
Sssun17发布了新的文献求助30
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348237
关于积分的说明 10337188
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682449
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010