Hyperspectral Image Classification Using a Superpixel–Pixel–Subpixel Multilevel Network

亚像素渲染 高光谱成像 计算机科学 人工智能 模式识别(心理学) 过度拟合 像素 稳健性(进化) 特征提取 卷积神经网络 图形 计算机视觉 人工神经网络 化学 基因 理论计算机科学 生物化学
作者
Bing Tu,Qi Ren,Qianming Li,Wangquan He,Wei He
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:15
标识
DOI:10.1109/tim.2023.3271713
摘要

Hyperspectral images (HSIs) often contain irregular ground cover with mixed spectral features and noise, which makes it challenging to identify the ground cover using only pixel features, superpixel features, or a combination of both. To alleviate the above problem, this paper proposes a superpixel-pixel-subpixel multilevel network (SPSM), which compensates for the insufficiencies of the different levels and decrease the information loss. For arbitrary irregular regions, superpixel features are simulated as network nodes using a graph convolutional network (GCN) to capture the spatial texture structure of the HSI, which improves the smooth classification results of local regions while facilitating the identification of different vegetation features in the region. Additionally, the global attention module (GAM) learns local regular regions based on pixel-level features to extend the global interactive representation capability and reduce information loss. To overcome spectral mixing and enhance material discrimination, the normalized attention module (NAM) is used to suppress unimportant subpixel information and identify and remove irrelevant details, thereby improving the identification of critical features that differentiate different materials. Finally, the three features are fused to build a SPSM classification framework to improve robustness to overfitting, reduce computational complexity, and facilitate target recognition. Experimental results on four HSI datasets demonstrate that the method is more capable of recognizing detailed features than other advanced comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助sunguangbin采纳,获得10
1秒前
唐帅发布了新的文献求助10
2秒前
2秒前
4秒前
Hello应助wangwang采纳,获得10
4秒前
龙成阳完成签到,获得积分10
6秒前
hhhc完成签到,获得积分10
7秒前
song发布了新的文献求助10
8秒前
bkagyin应助111采纳,获得10
9秒前
lwtsy发布了新的文献求助10
9秒前
高高小凝完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
笙笙完成签到,获得积分10
12秒前
高高小凝发布了新的文献求助10
13秒前
14秒前
Steven发布了新的文献求助30
15秒前
笙笙发布了新的文献求助10
16秒前
谨言完成签到 ,获得积分10
16秒前
FIN应助sns八丘采纳,获得20
17秒前
18秒前
无奈的如彤完成签到,获得积分20
18秒前
小七发布了新的文献求助10
18秒前
sanch完成签到 ,获得积分10
20秒前
lwtsy完成签到,获得积分10
21秒前
染墨完成签到,获得积分10
23秒前
sns八丘给sns八丘的求助进行了留言
23秒前
FashionBoy应助ma采纳,获得10
24秒前
26秒前
归海含烟完成签到,获得积分10
27秒前
跳脚的虾完成签到 ,获得积分10
30秒前
32秒前
cmicha发布了新的文献求助10
36秒前
可爱完成签到 ,获得积分10
38秒前
isak完成签到,获得积分10
41秒前
41秒前
丘比特应助可爱采纳,获得10
44秒前
HS发布了新的文献求助10
45秒前
大模型应助wuxunxun2015采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751