已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Natural Language Processing Accurately Differentiates Cancer Symptom Information in Electronic Health Record Narratives

恶心 心情 人工智能 医学 叙述的 自然语言处理 计算机科学 内科学 临床心理学 语言学 哲学
作者
Alaa Albashayreh,Anindita Bandyopadhyay,Nahid Zeinali,Min Zhang,Weiguo Fan,Stephanie Gilbertson‐White
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:5
标识
DOI:10.1200/cci.23.00235
摘要

PURPOSE Identifying cancer symptoms in electronic health record (EHR) narratives is feasible with natural language processing (NLP). However, more efficient NLP systems are needed to detect various symptoms and distinguish observed symptoms from negated symptoms and medication-related side effects. We evaluated the accuracy of NLP in (1) detecting 14 symptom groups (ie, pain, fatigue, swelling, depressed mood, anxiety, nausea/vomiting, pruritus, headache, shortness of breath, constipation, numbness/tingling, decreased appetite, impaired memory, disturbed sleep) and (2) distinguishing observed symptoms in EHR narratives among patients with cancer. METHODS We extracted 902,508 notes for 11,784 unique patients diagnosed with cancer and developed a gold standard corpus of 1,112 notes labeled for presence or absence of 14 symptom groups. We trained an embeddings-augmented NLP system integrating human and machine intelligence and conventional machine learning algorithms. NLP metrics were calculated on a gold standard corpus subset for testing. RESULTS The interannotator agreement for labeling the gold standard corpus was excellent at 92%. The embeddings-augmented NLP model achieved the best performance (F1 score = 0.877). The highest NLP accuracy was observed in pruritus (F1 score = 0.937) while the lowest accuracy was in swelling (F1 score = 0.787). After classifying the entire data set with embeddings-augmented NLP, we found that 41% of the notes included symptom documentation. Pain was the most documented symptom (29% of all notes) while impaired memory was the least documented (0.7% of all notes). CONCLUSION We illustrated the feasibility of detecting 14 symptom groups in EHR narratives and showed that an embeddings-augmented NLP system outperforms conventional machine learning algorithms in detecting symptom information and differentiating observed symptoms from negated symptoms and medication-related side effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的金完成签到 ,获得积分10
1秒前
怦然心动完成签到,获得积分10
4秒前
魔山西红柿完成签到,获得积分10
5秒前
爱撒娇的幻珊完成签到,获得积分10
6秒前
7秒前
充电宝应助36采纳,获得10
9秒前
wanna发布了新的文献求助10
12秒前
17秒前
MchemG应助wanna采纳,获得10
17秒前
doctor2023完成签到,获得积分10
18秒前
Percy完成签到 ,获得积分10
18秒前
小蘑菇应助义气的跳跳糖采纳,获得10
19秒前
20秒前
上官若男应助科研通管家采纳,获得10
21秒前
打打应助不厌采纳,获得10
21秒前
孤独尔白应助科研通管家采纳,获得10
21秒前
孤独尔白应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
舒服的微笑完成签到,获得积分10
22秒前
26秒前
36发布了新的文献求助10
27秒前
保佑我毕业完成签到 ,获得积分10
30秒前
yuaner完成签到,获得积分10
31秒前
cheng发布了新的文献求助10
33秒前
luf完成签到,获得积分10
34秒前
36秒前
36秒前
共享精神应助自由的威采纳,获得10
37秒前
三叔完成签到,获得积分0
38秒前
lijunlhc完成签到,获得积分10
38秒前
xjz240221完成签到 ,获得积分10
39秒前
39秒前
辛勤的乐曲完成签到,获得积分10
40秒前
41秒前
iu1392发布了新的文献求助10
41秒前
阿紫吖发布了新的文献求助10
41秒前
44秒前
45秒前
SciGPT应助ATREE采纳,获得10
45秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798340
求助须知:如何正确求助?哪些是违规求助? 3343790
关于积分的说明 10317628
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296