End-to-End Learning for Stochastic Preventive Dispatch of Renewables-Rich Power Systems in Abnormal Weather Conditions

可再生能源 计算机科学 电力系统 功率(物理) 气象学 运筹学 工程类 地理 电气工程 量子力学 物理
作者
Qun Yu,Zhiyi Li,Xutao Han,Ping Ju,Mohammad Shahidehpour
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:234: 121107-121107 被引量:1
标识
DOI:10.1016/j.renene.2024.121107
摘要

Power systems are currently increasingly threatened by abnormal weather conditions, which are exacerbated by global warming. In particular, the proliferation of renewable energy sources (RES), which are quite variable, might cause power systems to have insufficient energy supply to cope with the risk of severe power imbalances in such conditions. In this paper, a preventive power system dispatch model is proposed that allows power systems with large RES (specifically wind energy) installations to mitigate excessive load curtailments under abnormal weather conditions. Compared to the conventional predict-then-optimize (PTO) framework of power system dispatch that relies on accurate RES forecasting, the proposed end-to-end learning framework mitigates the impact of forecasting errors on decision-making, which reduces the dependence on the accuracy of RES forecasting and effectively enhances the resilience of the power system. The proposed framework consists of a probabilistic RES forecasting module, a preventive dispatch module, and a resilience-oriented assessment module. A backpropagation mechanism based on Karush-Kuhn-Tucker conditions is proposed to unify the dispatch optimization problem as deep neural networks, which ensures the reliability of optimal solutions as well as provides necessary gradients for backpropagation, successfully bridging the information gap among the three modules. The proposed model is updated iteratively in an online implementation scheme composed of the decision-making part and the reflection & training part. The results of numerical experiments on the IEEE 6- and 118-bus systems verify the effectiveness and superiority of the proposed model in maintaining the resilience of RES-based power systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Obliviate完成签到,获得积分10
刚刚
kk发布了新的文献求助10
刚刚
chenjzhuc应助可爱表里萌香采纳,获得10
刚刚
帅哥完成签到,获得积分10
1秒前
酷炫茉莉完成签到,获得积分10
1秒前
小谢发布了新的文献求助10
1秒前
科研小白完成签到,获得积分10
2秒前
单纯冰棍发布了新的文献求助10
3秒前
wcuzhl完成签到,获得积分10
3秒前
3秒前
夏天就是桃子味完成签到,获得积分10
4秒前
君君完成签到,获得积分10
4秒前
酷波er应助笑一笑采纳,获得30
5秒前
5秒前
ezvsnoc完成签到,获得积分10
6秒前
Ninico完成签到,获得积分10
8秒前
满意的醉蝶完成签到,获得积分10
9秒前
小二郎应助kk采纳,获得10
9秒前
柠一完成签到 ,获得积分10
9秒前
suyanan完成签到 ,获得积分10
9秒前
金扇扇完成签到 ,获得积分10
9秒前
hm完成签到,获得积分10
9秒前
知了完成签到 ,获得积分10
9秒前
Atan完成签到,获得积分10
10秒前
张晓芳完成签到,获得积分10
11秒前
surain发布了新的文献求助10
11秒前
未来完成签到,获得积分10
11秒前
晓风完成签到,获得积分10
11秒前
DMMM完成签到,获得积分10
12秒前
时尚的莛完成签到,获得积分10
12秒前
3939完成签到 ,获得积分10
13秒前
冬月完成签到,获得积分10
14秒前
xinxinfenghuo完成签到,获得积分10
14秒前
杨白秋完成签到,获得积分10
15秒前
阿巴阿巴完成签到,获得积分10
17秒前
77完成签到 ,获得积分10
17秒前
曹中明完成签到,获得积分10
17秒前
17秒前
笑一笑完成签到,获得积分10
18秒前
kk完成签到,获得积分20
18秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819996
求助须知:如何正确求助?哪些是违规求助? 3362921
关于积分的说明 10419317
捐赠科研通 3081243
什么是DOI,文献DOI怎么找? 1695047
邀请新用户注册赠送积分活动 814855
科研通“疑难数据库(出版商)”最低求助积分说明 768545