A morphology-Euclidean-linear recognition method for rebar point clouds of highway tunnel linings during the construction phase

钢筋 点云 预处理器 计算机科学 结构工程 工程类 人工智能
作者
Lizhi Zhou,Chuan Wang,Pei Niu,Hanming Zhang,Ning Zhang,Quanyi Xie,Jianhong Wang,Xiao Zhang,Juanjuan Li
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-12-2023-1227
摘要

Purpose Laser point clouds are a 3D reconstruction method with wide range, high accuracy and strong adaptability. Therefore, the purpose is to discover a construction point cloud extraction method that can obtain complete information about the construction of rebar, facilitating construction quality inspection and tunnel data archiving, to reduce the cost and complexity of construction management. Design/methodology/approach Firstly, this paper analyzes the point cloud data of the tunnel during the construction phase, extracts the main features of the rebar data and proposes an M-E-L recognition method. Secondly, based on the actual conditions of the tunnel and the specifications of Chinese tunnel engineering, a rebar model experiment is designed to obtain experimental data. Finally, the feasibility and accuracy of the M-E-L recognition method are analyzed and tested based on the experimental data from the model. Findings Based on tunnel morphology characteristics, data preprocessing, Euclidean clustering and PCA shape extraction methods, a M-E-L identification algorithm is proposed for identifying secondary lining rebars in highway tunnel construction stages. The algorithm achieves 100% extraction of the first-layer rebars, allowing for the three-dimensional visualization of the on-site rebar situation. Subsequently, through data processing, rebar dimensions and spacings can be obtained. For the second-layer rebars, 55% extraction is achieved, providing information on the rebar skeleton and partial rebar details at the construction site. These extracted data can be further processed to verify compliance with construction requirements. Originality/value This paper introduces a laser point cloud method for double-layer rebar identification in tunnels. Current methods rely heavily on manual detection, lacking objectivity. Objective approaches for automatic rebar identification include image-based and LiDAR-based methods. Image-based methods are constrained by tunnel lighting conditions, while LiDAR focuses on straight rebar skeletons. Our research proposes a 3D point cloud recognition algorithm for tunnel lining rebar. This method can extract double-layer rebars and obtain construction rebar dimensions, enhancing management efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助3dyf采纳,获得10
1秒前
重要易槐完成签到,获得积分10
2秒前
熙梓日记发布了新的文献求助10
2秒前
jtc发布了新的文献求助10
2秒前
木水水关注了科研通微信公众号
3秒前
汉堡包应助爱学习的猫采纳,获得10
4秒前
5秒前
liuerlong完成签到 ,获得积分10
6秒前
7秒前
万能图书馆应助zyy0910采纳,获得10
7秒前
Orange应助echo采纳,获得10
7秒前
小奔完成签到,获得积分10
8秒前
大模型应助坦率如柏采纳,获得10
8秒前
晓漾完成签到,获得积分10
8秒前
9秒前
9秒前
森林木发布了新的文献求助10
10秒前
Steve完成签到,获得积分10
12秒前
zlzlzl发布了新的文献求助10
12秒前
chengxiping发布了新的文献求助10
13秒前
13秒前
阿彤沐发布了新的文献求助10
13秒前
13秒前
Jasper应助kk采纳,获得10
14秒前
14秒前
Kw完成签到,获得积分10
14秒前
15秒前
窦房结完成签到 ,获得积分10
15秒前
15秒前
拼搏羽毛完成签到 ,获得积分10
16秒前
Steve发布了新的文献求助10
16秒前
998172完成签到,获得积分10
16秒前
children发布了新的文献求助10
16秒前
17秒前
陈建发布了新的文献求助10
17秒前
17秒前
iNk完成签到,获得积分0
17秒前
程新亮完成签到 ,获得积分10
18秒前
echo发布了新的文献求助10
19秒前
阿彤沐完成签到,获得积分10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4151859
求助须知:如何正确求助?哪些是违规求助? 3688057
关于积分的说明 11651005
捐赠科研通 3380762
什么是DOI,文献DOI怎么找? 1855229
邀请新用户注册赠送积分活动 917170
科研通“疑难数据库(出版商)”最低求助积分说明 830846