材料科学
电容器
储能
极化率
电介质
陶瓷
对偶(语法数字)
相(物质)
铁电性
铁电陶瓷
光电子学
超级电容器
工程物理
纳米技术
复合材料
电容
电气工程
电极
电压
物理化学
热力学
分子
艺术
化学
文学类
工程类
功率(物理)
物理
有机化学
作者
Xin Xiong,Hui Liu,Ji Zhang,Lucas Lemos da Silva,Zhonghui Sheng,Yonghao Yao,Ge Wang,Manuel Hinterstein,Shujun Zhang,Jun Chen
标识
DOI:10.1002/adma.202410088
摘要
Abstract High‐performance dielectric energy‐storage ceramics are beneficial for electrostatic capacitors used in various electronic systems. However, the trade‐off between reversible polarizability and breakdown strength poses a significant challenge in simultaneously achieving high energy density and efficiency. Here a strategy is presented to address this issue by constructing a dual‐phase structure through in situ phase separation. (Bi 0.5 Na 0.5 )TiO 3 ‐BaTiO 3 ‐based relaxor ferroelectric ceramics are developed, creating a grain‐separated dual perovskite phase structure using a facile solid‐state reaction method. These ceramics feature two interactive relaxor phases with diversified nanoscale polar structures and heterogeneous grain boundaries, synergistically contributing to high polarization with low hysteresis, substantially increased resistivity, and suppressed electrostrain. Remarkably, a record‐high energy density of 23.6 J cm −3 with a high efficiency of 92% under 99 kV mm −1 is achieved in the bulk ceramic capacitor. This strategy holds promise for enhancing overall energy‐storage performance and related functionalities in ferroelectrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI