Meta‐Attention Deep Learning for Smart Development of Metasurface Sensors

计算机科学 深度学习 人工智能 变压器 电气工程 工程类 电压
作者
Yuan Gao,Wei Chen,Fajun Li,Mingyong Zhuang,Yiming Yan,Jun Wang,Xiang Wang,Zhaogang Dong,Wei Ma,Jinfeng Zhu
出处
期刊:Advanced Science [Wiley]
被引量:7
标识
DOI:10.1002/advs.202405750
摘要

Abstract Optical metasurfaces with pronounced spectral characteristics are promising for sensor applications. Currently, deep learning (DL) offers a rapid manner to design various metasurfaces. However, conventional DL models are usually assumed as black boxes, which is difficult to explain how a DL model learns physical features, and they usually predict optical responses of metasurfaces in a fuzzy way. This makes them incapable of capturing critical spectral features precisely, such as high quality (Q) resonances, and hinders their use in designing metasurface sensors. Here, a transformer‐based explainable DL model named Metaformer for the high‐intelligence design, which adopts a spectrum‐splitting scheme to elevate 99% prediction accuracy through reducing 99% training parameters, is established. Based on the Metaformer, all‐dielectric metasurfaces based on quasi‐bound states in the continuum (Q‐BIC) for high‐performance metasensing are designed, and fabrication experiments are guided potently. The explainable learning relies on spectral position encoding and multi‐head attention of meta‐optics features, which overwhelms traditional black‐box models dramatically. The meta‐attention mechanism provides deep physics insights on metasurface sensors, and will inspire more powerful DL design applications on other optical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林黛玉倒拔垂杨柳完成签到 ,获得积分10
1秒前
1秒前
小吴完成签到 ,获得积分10
1秒前
banimadao完成签到,获得积分10
2秒前
十七完成签到 ,获得积分10
2秒前
不安的晓灵完成签到 ,获得积分10
3秒前
星星完成签到,获得积分10
3秒前
4秒前
江九言完成签到 ,获得积分10
7秒前
7秒前
13击发布了新的文献求助10
7秒前
爱笑半雪完成签到,获得积分10
7秒前
8秒前
啊凡完成签到 ,获得积分10
9秒前
9秒前
michellewu完成签到 ,获得积分10
11秒前
xiao xu完成签到,获得积分10
11秒前
矮小的凡阳完成签到 ,获得积分10
11秒前
123完成签到,获得积分10
12秒前
哈拉斯发布了新的文献求助30
12秒前
sen123发布了新的文献求助10
12秒前
小橙子完成签到,获得积分10
13秒前
世间安得双全法完成签到,获得积分0
13秒前
知犯何逆完成签到 ,获得积分10
13秒前
cccyyb完成签到,获得积分10
14秒前
老迟到的幼枫完成签到,获得积分10
15秒前
ZhouYW应助加减乘除采纳,获得10
15秒前
cdercder应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
hjg发布了新的文献求助10
17秒前
17秒前
Littlerain~完成签到,获得积分10
17秒前
咖啡的腿毛完成签到 ,获得积分10
18秒前
张占完成签到,获得积分10
19秒前
DWRH发布了新的文献求助10
22秒前
ajing完成签到,获得积分10
23秒前
酷波er应助001采纳,获得10
24秒前
BAI_1完成签到,获得积分10
24秒前
蓝蓝的腿毛完成签到 ,获得积分10
25秒前
King完成签到,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792594
求助须知:如何正确求助?哪些是违规求助? 3336810
关于积分的说明 10282263
捐赠科研通 3053691
什么是DOI,文献DOI怎么找? 1675675
邀请新用户注册赠送积分活动 803696
科研通“疑难数据库(出版商)”最低求助积分说明 761495