卡斯普
线程(蛋白质序列)
人工智能
蛋白质结构预测
深度学习
同源建模
结构生物信息学
计算机科学
蛋白质功能预测
蛋白质设计
机器学习
蛋白质结构
蛋白质功能
生物
生物化学
基因
酶
作者
Lingtao Chen,Qiaomu Li,Kazi Fahim Ahmad Nasif,Ying Xie,Bobin Deng,Shuteng Niu,Seyedamin Pouriyeh,Zhiyu Dai,Jiawei Chen,Yixin Xie
摘要
Protein structure prediction is important for understanding their function and behavior. This review study presents a comprehensive review of the computational models used in predicting protein structure. It covers the progression from established protein modeling to state-of-the-art artificial intelligence (AI) frameworks. The paper will start with a brief introduction to protein structures, protein modeling, and AI. The section on established protein modeling will discuss homology modeling, ab initio modeling, and threading. The next section is deep learning-based models. It introduces some state-of-the-art AI models, such as AlphaFold (AlphaFold, AlphaFold2, AlphaFold3), RoseTTAFold, ProteinBERT, etc. This section also discusses how AI techniques have been integrated into established frameworks like Swiss-Model, Rosetta, and I-TASSER. The model performance is compared using the rankings of CASP14 (Critical Assessment of Structure Prediction) and CASP15. CASP16 is ongoing, and its results are not included in this review. Continuous Automated Model EvaluatiOn (CAMEO) complements the biennial CASP experiment. Template modeling score (TM-score), global distance test total score (GDT_TS), and Local Distance Difference Test (lDDT) score are discussed too. This paper then acknowledges the ongoing difficulties in predicting protein structure and emphasizes the necessity of additional searches like dynamic protein behavior, conformational changes, and protein-protein interactions. In the application section, this paper introduces some applications in various fields like drug design, industry, education, and novel protein development. In summary, this paper provides a comprehensive overview of the latest advancements in established protein modeling and deep learning-based models for protein structure predictions. It emphasizes the significant advancements achieved by AI and identifies potential areas for further investigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI