遗传建筑学
全基因组关联研究
多样性(政治)
遗传多样性
比例(比率)
生物
进化生物学
遗传学
人口
人口学
地理
政治学
数量性状位点
社会学
基因
地图学
单核苷酸多态性
法学
基因型
作者
Anurag Verma,Jennifer E. Huffman,Alex A Rodriguez,Mitchell Conery,Molei Liu,Yuk‐Lam Ho,Youngdae Kim,David Heise,Lindsay Guare,Vidul Ayakulangara Panickan,Helene Garcon,Franciel Linares,Lauren Costa,Ian Goethert,Ryan Tipton,Jacqueline Honerlaw,Laura Davies,Stacey B. Whitbourne,Jérémy Cohen,Daniel Posner
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2024-07-18
卷期号:385 (6706)
被引量:44
标识
DOI:10.1126/science.adj1182
摘要
One of the justifiable criticisms of human genetic studies is the underrepresentation of participants from diverse populations. Lack of inclusion must be addressed at-scale to identify causal disease factors and understand the genetic causes of health disparities. We present genome-wide associations for 2068 traits from 635,969 participants in the Department of Veterans Affairs Million Veteran Program, a longitudinal study of diverse United States Veterans. Systematic analysis revealed 13,672 genomic risk loci; 1608 were only significant after including non-European populations. Fine-mapping identified causal variants at 6318 signals across 613 traits. One-third ( n = 2069) were identified in participants from non-European populations. This reveals a broadly similar genetic architecture across populations, highlights genetic insights gained from underrepresented groups, and presents an extensive atlas of genetic associations.
科研通智能强力驱动
Strongly Powered by AbleSci AI