MonoLoT: Self-Supervised Monocular Depth Estimation in Low-Texture Scenes for Automatic Robotic Endoscopy

人工智能 计算机科学 计算机视觉 单眼 纹理(宇宙学) 图像(数学)
作者
Qi He,Guang Feng,Sophia Bano,Danail Stoyanov,Siyang Zuo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3423791
摘要

The self-supervised monocular depth estimation framework is well-suited for medical images that lack ground-truth depth, such as those from digestive endoscopes, facilitating navigation and 3D reconstruction in the gastrointestinal tract. However, this framework faces several limitations, including poor performance in low-texture environments, limited generalisation to real-world datasets, and unclear applicability in downstream tasks like visual servoing. To tackle these challenges, we propose MonoLoT, a self-supervised monocular depth estimation framework featuring two key innovations: point matching loss and batch image shuffle. Extensive ablation studies on two publicly available datasets, namely C3VD and SimCol, have shown that methods enabled by MonoLoT achieve substantial improvements, with accuracies of 0.944 on C3VD and 0.959 on SimCol, surpassing both depth-supervised and self-supervised baselines on C3VD. Qualitative evaluations on real-world endoscopic data underscore the generalisation capabilities of our methods, outperforming both depth-supervised and self-supervised baselines. To demonstrate the feasibility of using monocular depth estimation for visual servoing, we have successfully integrated our method into a proof-of-concept robotic platform, enabling real-time automatic intervention and control in digestive endoscopy. In summary, our method represents a significant advancement in monocular depth estimation for digestive endoscopy, overcoming key challenges and opening promising avenues for medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助wwww采纳,获得10
刚刚
刚刚
1秒前
小熊冲冲冲完成签到,获得积分20
3秒前
打打应助lili采纳,获得10
4秒前
6秒前
7秒前
my完成签到,获得积分10
7秒前
7秒前
8秒前
大个应助FeliciaLee采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
祖之微笑发布了新的文献求助10
11秒前
机灵的乐荷完成签到,获得积分10
11秒前
zzz发布了新的文献求助10
12秒前
dwc完成签到,获得积分10
12秒前
赵廷潇发布了新的文献求助10
12秒前
麻雀发布了新的文献求助10
13秒前
张耘硕发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
蔡蔡完成签到,获得积分10
16秒前
科研通AI6应助好蓝采纳,获得10
17秒前
爆米花应助Anyyyyya采纳,获得10
17秒前
18秒前
19秒前
老迟到的羊完成签到 ,获得积分10
21秒前
阔达凝天发布了新的文献求助10
21秒前
Ava应助刘畅采纳,获得10
21秒前
21秒前
我不是王美嘉关注了科研通微信公众号
22秒前
1111发布了新的文献求助10
23秒前
Owen应助R7采纳,获得10
23秒前
23秒前
汪汪完成签到,获得积分10
24秒前
CodeCraft应助自由的乘云采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312