MICCF: A Mutual Information Constrained Clustering Framework for Learning Clustering-Oriented Feature Representations

聚类分析 相互信息 计算机科学 特征(语言学) 人工智能 特征学习 数据挖掘 模式识别(心理学) 哲学 语言学
作者
Hongyu Li,Lefei Zhang,Kehua Su,Wei Yu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (8): 1-22
标识
DOI:10.1145/3672402
摘要

Deep clustering is a crucial task in machine learning and data mining that focuses on acquiring feature representations conducive to clustering. Previous research relies on self-supervised representation learning for general feature representations, such features may not be optimally suited for downstream clustering tasks. In this article, we introduce MICCF, a framework designed to bridge this gap and enhance clustering performance. MICCF enhances feature representations by combining mutual information constraints at different levels and employs an auxiliary alignment mutual information module for learning clustering-oriented features. To be specific, we propose a dual mutual information constraints module, incorporating minimal mutual information constraints at the feature level and maximal mutual information constraints at the instance level. This reduction in feature redundancy encourages the neural network to extract more discriminative features, while maximization ensures more unbiased and robust representations. To obtain clustering-oriented representations, the auxiliary alignment mutual information module utilizes pseudo-labels to maximize mutual information through a multi-classifier network, aligning features with the clustering task. The main network and the auxiliary module work in synergy to jointly optimize feature representations that are well-suited for the clustering task. We validate the effectiveness of our method through extensive experiments on six benchmark datasets. The results indicate that our method performs well in most scenarios, particularly on fine-grained datasets, where our approach effectively distinguishes subtle differences between closely related categories. Notably, our approach achieved a remarkable accuracy of 96.4% on the ImageNet-10 dataset, surpassing other comparison methods. The code is available at https://github.com/Li-Hyn/MICCF.git .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pu发布了新的文献求助10
1秒前
欧阳惜筠发布了新的文献求助10
1秒前
可爱的函函应助洛水伊南采纳,获得10
2秒前
共享精神应助jzyy采纳,获得10
2秒前
董向远完成签到,获得积分10
3秒前
铁锅炖大鹅完成签到,获得积分10
3秒前
3秒前
上官若男应助科研挂采纳,获得10
4秒前
田様应助淡定的凡蕾采纳,获得10
4秒前
科研通AI5应助蜗居采纳,获得10
4秒前
开心的懂完成签到 ,获得积分10
5秒前
痴情的烧鹅完成签到,获得积分10
5秒前
5秒前
6秒前
情怀应助跳跳妈妈采纳,获得10
9秒前
燕子完成签到,获得积分10
9秒前
JETSTREAM完成签到,获得积分10
9秒前
10秒前
常常在努力完成签到,获得积分10
10秒前
默默的皮牙子应助十一采纳,获得10
10秒前
完美芹发布了新的文献求助10
10秒前
luct发布了新的文献求助10
11秒前
8788完成签到,获得积分10
11秒前
心灵美千易完成签到,获得积分10
12秒前
13秒前
lijia3发布了新的文献求助10
13秒前
科目三应助英勇笑萍采纳,获得10
14秒前
14秒前
15秒前
852应助garyaa采纳,获得10
16秒前
16秒前
17秒前
17秒前
完美芹完成签到,获得积分20
17秒前
桪玖完成签到,获得积分10
18秒前
手术刀发布了新的文献求助10
18秒前
iceice发布了新的文献求助10
19秒前
jzyy发布了新的文献求助10
19秒前
安静的难破完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786174
求助须知:如何正确求助?哪些是违规求助? 3331826
关于积分的说明 10252362
捐赠科研通 3047109
什么是DOI,文献DOI怎么找? 1672400
邀请新用户注册赠送积分活动 801279
科研通“疑难数据库(出版商)”最低求助积分说明 760137