缩放比例
标度律
统计物理学
理论物理学
物理
计算机科学
法学
几何学
数学
政治学
作者
Xin-Ya Zhang,Jack Murdoch Moore,Xiaolei Ru,Gang Yan
标识
DOI:10.1103/physrevlett.133.138401
摘要
We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.
科研通智能强力驱动
Strongly Powered by AbleSci AI