STM-based symbolic regression for strength prediction of RC deep beams and corbels

符号回归 计算机科学 桁架 对角线的 人工智能 回归 抗剪强度(土壤) 回归分析 遗传程序设计 机器学习 结构工程 数学 地质学 工程类 统计 几何学 土壤科学 土壤水分
作者
Khaled Megahed
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74803-9
摘要

Abstract This study uses symbolic regression with a strut-and-tie model to predict the shear strength of reinforced concrete deep beams (RCDBs) and corbels (RCCs). Previous studies have proposed two distinct types of models for estimating shear capacity: explainable models based on theoretical derivations and black-box models derived from machine learning (ML) methods. This study proposes a hybrid model derived from the strut-and-tie model (STM), where the performance of STM is enhanced through the ML approach using genetic programming. This model is based on a comprehensive experimental database of 810 tests for the shear strength of RC deep beams and 371 tests for RC corbels from various research papers. The developed STM-based symbolic regression (SR-STM) integrates two distinct force-transferring mechanisms: the diagonal strut mechanism utilizing concrete strength and the truss mechanism utilizing orthogonal web reinforcement. The SR-STM model is both robust and interpretable, demonstrating high prediction accuracy with mean values of the prediction-to-actual ratios of 0.999 and 1.004 and coefficient of determination values of 0.913 and 0.862 for RCDBs and RCCs, respectively, while providing explainable mathematical expressions that align with the mechanical principles of STM. The developed SR-STM model is benchmarked against several state-of-the-art models and evaluated against the CatBoost ML technique, demonstrating acceptable performance. The results highlight the SR-STM model’s effectiveness in providing reliable predictions and valuable insights for practical engineering applications. Furthermore, a SHAP (Shapley Additive Explanations) analysis was performed, and its results align with the SR-STM model, confirming the model’s effectiveness in accurately capturing the key factors influencing the shear strength of RCDBs and RCCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue发布了新的文献求助10
刚刚
刚刚
来日可追应助ZY采纳,获得10
1秒前
1秒前
MOF@COF完成签到,获得积分10
2秒前
斯文败类应助闪闪糖豆采纳,获得10
2秒前
zlzlzte完成签到 ,获得积分10
2秒前
章小白完成签到,获得积分10
3秒前
muzixin发布了新的文献求助10
3秒前
所所应助CAIJING采纳,获得30
4秒前
zyk发布了新的文献求助10
4秒前
xxxxfiona发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
爆米花应助逆旅如行人采纳,获得10
7秒前
Star应助李荣航采纳,获得10
7秒前
8秒前
JamesPei应助雷寒云采纳,获得10
9秒前
上官若男应助MY采纳,获得30
9秒前
perovskite发布了新的文献求助10
9秒前
知更鸟完成签到,获得积分10
10秒前
mito发布了新的文献求助10
10秒前
ZjieY发布了新的文献求助10
11秒前
李烛尘完成签到,获得积分10
11秒前
小蘑菇应助361采纳,获得10
11秒前
12秒前
12秒前
Wtony完成签到 ,获得积分10
13秒前
棉花糖完成签到,获得积分10
14秒前
111完成签到,获得积分20
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得30
15秒前
含糊的从云关注了科研通微信公众号
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
HEAUBOOK应助科研通管家采纳,获得10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807380
求助须知:如何正确求助?哪些是违规求助? 3352160
关于积分的说明 10357573
捐赠科研通 3068183
什么是DOI,文献DOI怎么找? 1684884
邀请新用户注册赠送积分活动 809995
科研通“疑难数据库(出版商)”最低求助积分说明 765853