Adversarial Machine Learning for Network Intrusion Detection Systems: A Comprehensive Survey

对抗制 计算机科学 对抗性机器学习 人工智能 计算机安全 机器学习 深度学习 入侵检测系统 分类学(生物学) 人工神经网络 深层神经网络 植物 生物
作者
Ke He,Dong Seong Kim,Muhammad Rizwan Asghar
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 538-566 被引量:299
标识
DOI:10.1109/comst.2022.3233793
摘要

Network-based Intrusion Detection System (NIDS) forms the frontline defence against network attacks that compromise the security of the data, systems, and networks. In recent years, Deep Neural Networks (DNNs) have been increasingly used in NIDS to detect malicious traffic due to their high detection accuracy. However, DNNs are vulnerable to adversarial attacks that modify an input example with imperceivable perturbation, which causes a misclassification by the DNN. In security-sensitive domains, such as NIDS, adversarial attacks pose a severe threat to network security. However, existing studies in adversarial learning against NIDS directly implement adversarial attacks designed for Computer Vision (CV) tasks, ignoring the fundamental differences in the detection pipeline and feature spaces between CV and NIDS. It remains a major research challenge to launch and detect adversarial attacks against NIDS. This article surveys the recent literature on NIDS, adversarial attacks, and network defences since 2015 to examine the differences in adversarial learning against deep neural networks in CV and NIDS. It provides the reader with a thorough understanding of DL-based NIDS, adversarial attacks and defences, and research trends in this field. We first present a taxonomy of DL-based NIDS and discuss the impact of taxonomy on adversarial learning. Next, we review existing white-box and black-box adversarial attacks on DNNs and their applicability in the NIDS domain. Finally, we review existing defence mechanisms against adversarial examples and their characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文子发布了新的文献求助10
刚刚
kalisu24完成签到,获得积分10
刚刚
哭泣的雪巧完成签到,获得积分10
刚刚
舒服的鱼完成签到,获得积分10
1秒前
1秒前
Xx发布了新的文献求助10
1秒前
科研通AI6应助张土豆采纳,获得10
1秒前
Lucas应助嗯对采纳,获得10
2秒前
xiaozhang完成签到 ,获得积分10
3秒前
3秒前
科研通AI6应助科研狗采纳,获得10
4秒前
dd关闭了dd文献求助
4秒前
4秒前
zmmm发布了新的文献求助10
4秒前
搜集达人应助WQ采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
kk完成签到,获得积分10
7秒前
WZL完成签到,获得积分10
9秒前
Jared应助坦率水香采纳,获得10
9秒前
上官若男应助416采纳,获得10
10秒前
不懂科研的小白完成签到,获得积分10
10秒前
研友_nxer7Z发布了新的文献求助10
11秒前
12秒前
12秒前
一个西藏发布了新的文献求助20
12秒前
汉堡包应助开心的西瓜采纳,获得10
14秒前
ZXD完成签到,获得积分10
14秒前
决明完成签到,获得积分20
15秒前
十伍完成签到 ,获得积分10
15秒前
15秒前
快乐芷荷完成签到 ,获得积分10
16秒前
xielunwen完成签到,获得积分10
16秒前
小二郎应助柒柒采纳,获得10
16秒前
18秒前
19秒前
20秒前
21秒前
杨123完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265