On-Demand Delivery from Stores: Dynamic Dispatching and Routing with Random Demand

计算机科学 布线(电子设计自动化) 运筹学 动态定价 数学优化 集合(抽象数据类型) 马尔可夫决策过程 维数之咒 经济 微观经济学 马尔可夫过程 工程类 数学 计算机网络 机器学习 统计 程序设计语言
作者
Sheng Liu,Zhixing Luo
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 595-612 被引量:31
标识
DOI:10.1287/msom.2022.1171
摘要

Problem definition: On-demand delivery has become increasingly popular around the world. Motivated by a large grocery chain store who offers fast on-demand delivery services, we model and solve a stochastic dynamic driver dispatching and routing problem for last-mile delivery systems where on-time performance is the main target. The system operator needs to dispatch a set of drivers and specify their delivery routes facing random demand that arrives over a fixed number of periods. The resulting stochastic dynamic program is challenging to solve because of the curse of dimensionality. Methodology/results: We propose a novel structured approximation framework to approximate the value function via a parametrized dispatching and routing policy. We analyze the structural properties of the approximation framework and establish its performance guarantee under large-demand scenarios. We then develop efficient exact algorithms for the approximation problem based on Benders decomposition and column generation, which deliver verifiably optimal solutions within minutes. Managerial implications: The evaluation results on a real-world data set show that our framework outperforms the current policy of the company by 36.53% on average in terms of delivery time. We also perform several policy experiments to understand the value of dynamic dispatching and routing with varying fleet sizes and dispatch frequencies. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72222011 and 72171112], China Association for Science and Technology [Grant 2019QNRC001], and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.1171 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
321完成签到,获得积分10
1秒前
林奕发布了新的文献求助10
1秒前
樊瑞阳发布了新的文献求助10
1秒前
Criminology34应助崔无敌采纳,获得10
1秒前
Violet发布了新的文献求助20
1秒前
乐哉完成签到,获得积分10
1秒前
和欧文学修仙关注了科研通微信公众号
1秒前
2秒前
2秒前
3秒前
小二郎应助潇涯采纳,获得10
3秒前
3秒前
3秒前
大气立果发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
songfeifeng完成签到,获得积分10
4秒前
婷婷发布了新的文献求助10
4秒前
乐哉发布了新的文献求助10
4秒前
5秒前
scgfren发布了新的文献求助10
5秒前
5秒前
Lucas应助JusT采纳,获得10
5秒前
Miaochen完成签到,获得积分10
6秒前
6秒前
赘婿应助饿得咕咕地采纳,获得10
7秒前
彭于晏应助YChen采纳,获得10
7秒前
刘乐妍发布了新的文献求助30
7秒前
7秒前
7秒前
猫猫祟完成签到 ,获得积分10
7秒前
7秒前
8秒前
李健的粉丝团团长应助cy采纳,获得10
8秒前
VDC应助笨笨的外套采纳,获得30
8秒前
LL发布了新的文献求助10
8秒前
replica发布了新的文献求助10
8秒前
9秒前
XYN1发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182