On-Demand Delivery from Stores: Dynamic Dispatching and Routing with Random Demand

计算机科学 布线(电子设计自动化) 运筹学 动态定价 数学优化 集合(抽象数据类型) 马尔可夫决策过程 维数之咒 经济 微观经济学 马尔可夫过程 工程类 数学 计算机网络 机器学习 统计 程序设计语言
作者
Sheng Liu,Zhixing Luo
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 595-612 被引量:35
标识
DOI:10.1287/msom.2022.1171
摘要

Problem definition: On-demand delivery has become increasingly popular around the world. Motivated by a large grocery chain store who offers fast on-demand delivery services, we model and solve a stochastic dynamic driver dispatching and routing problem for last-mile delivery systems where on-time performance is the main target. The system operator needs to dispatch a set of drivers and specify their delivery routes facing random demand that arrives over a fixed number of periods. The resulting stochastic dynamic program is challenging to solve because of the curse of dimensionality. Methodology/results: We propose a novel structured approximation framework to approximate the value function via a parametrized dispatching and routing policy. We analyze the structural properties of the approximation framework and establish its performance guarantee under large-demand scenarios. We then develop efficient exact algorithms for the approximation problem based on Benders decomposition and column generation, which deliver verifiably optimal solutions within minutes. Managerial implications: The evaluation results on a real-world data set show that our framework outperforms the current policy of the company by 36.53% on average in terms of delivery time. We also perform several policy experiments to understand the value of dynamic dispatching and routing with varying fleet sizes and dispatch frequencies. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72222011 and 72171112], China Association for Science and Technology [Grant 2019QNRC001], and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.1171 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐完成签到,获得积分10
刚刚
CCR发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
yoyo发布了新的文献求助10
1秒前
1秒前
Sepstar发布了新的文献求助10
1秒前
2秒前
HXX发布了新的文献求助10
2秒前
情怀应助不爱吃苹果采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
CipherSage应助sunwending采纳,获得10
2秒前
高12完成签到,获得积分20
2秒前
我是老大应助萝卜采纳,获得10
3秒前
ruter发布了新的文献求助10
4秒前
4秒前
小西力劲发布了新的文献求助10
4秒前
RZY完成签到,获得积分10
4秒前
Owen应助1111采纳,获得10
5秒前
Smile完成签到,获得积分10
5秒前
lcc发布了新的文献求助10
5秒前
5秒前
搜集达人应助Cting采纳,获得10
5秒前
深情安青应助DMPK采纳,获得30
6秒前
Grace完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
甜食爱好应助玛卡巴卡采纳,获得10
7秒前
皮皮虾发布了新的文献求助10
7秒前
lou发布了新的文献求助10
8秒前
隐形曼青应助英勇的听荷采纳,获得10
8秒前
打打应助牛拉犁采纳,获得10
9秒前
kelexh发布了新的文献求助10
9秒前
活泼的寒安完成签到 ,获得积分10
9秒前
嘟噜发布了新的文献求助10
9秒前
xliiii发布了新的文献求助10
10秒前
完美世界应助Sepstar采纳,获得10
10秒前
bkagyin应助阳光的幻灵采纳,获得10
10秒前
黑暗暴龙神完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5673764
求助须知:如何正确求助?哪些是违规求助? 4935392
关于积分的说明 15145856
捐赠科研通 4833011
什么是DOI,文献DOI怎么找? 2588591
邀请新用户注册赠送积分活动 1542250
关于科研通互助平台的介绍 1500356