检测前跟踪
颗粒过滤器
加速度
跟踪(教育)
算法
计算机科学
蒙特卡罗方法
滤波器(信号处理)
噪音(视频)
磁道(磁盘驱动器)
信噪比(成像)
人工智能
数学
计算机视觉
物理
电信
经典力学
统计
操作系统
图像(数学)
教育学
心理学
作者
Xiaoyan Ma,Pengfei Liu,Yifan Guo,Dandi Lao,Yiwei Lv,Zhengkang Feng
标识
DOI:10.1109/ciss57580.2022.9971280
摘要
In the field of weak target detection and tracking, when the target maneuvers, the detection capability of the traditional Multiple-Model (MM) Particle Filter (PF) Track-Before-Detect (TBD) algorithm decreases and the calculation amount of the algorithm increases. In this paper, an improved MM-PF-TBD algorithm is proposed. By adding the Constant Acceleration (CA) model, the Coordinate Turn (CT) model with variable turning rate and the Quasi-Monte Carlo (QMC) method, the improved algorithm could achieve the detection and tracking of weak maneuvering targets. Simulation results show that the detection capacity of the improved algorithm is 15% higher than that of the traditional algorithm, and the improved algorithm has more stable performance in low Signal-to-Noise Ratio (SNR) environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI