已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Turning words into numbers: Assessing work attitudes using natural language processing.

心理信息 心理学 感知 应用心理学 结构效度 构造(python库) 利克特量表 社会心理学 计算机科学 自然语言处理 心理测量学 梅德林 临床心理学 发展心理学 法学 程序设计语言 神经科学 政治学
作者
Andrew B. Speer,James Perrotta,Andrew P. Tenbrink,Lauren J. Wegmeyer,Angie Y. Delacruz,Jenna Bowker
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:108 (6): 1027-1045 被引量:13
标识
DOI:10.1037/apl0001061
摘要

Researchers and practitioners are often interested in assessing employee attitudes and work perceptions. Although such perceptions are typically measured using Likert surveys or some other closed-end numerical rating format, many organizations also have access to large amounts of qualitative employee data. For example, open-ended comments from employee surveys allow workers to provide rich and contextualized perspectives about work. Unfortunately, there are practical challenges when trying to understand employee perceptions from qualitative data. Given this, the present study investigated whether natural language processing (NLP) algorithms could be developed to automatically score employee comments according to important work attitudes and perceptions. Using a large sample of employees, algorithms were developed to translate text into scores that reflect what comments were about (theme scores) and how positively targeted constructs were described (valence scores) for 28 work constructs. The resulting algorithms and scores are labeled the Text-Based Attitude and Perception Scoring (TAPS) dictionaries, which are made publicly available and were built using a mix of count-based scoring and transformer neural networks. The psychometric properties of the TAPS scores were then investigated. Results showed that theme scores differentiated responses based on their likelihood to discuss specific constructs. Additionally, valence scores exhibited strong evidence of reliability and validity, particularly, when analyzed on text responses that were more relevant to the construct of interest. This suggests that researchers and practitioners should explicitly design text prompts to elicit construct-related information if they wish to accurately assess work attitudes and perceptions via NLP. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助General采纳,获得10
1秒前
ZIJUNZHAO完成签到 ,获得积分10
1秒前
chyang发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
英俊的铭应助小刘加油啊采纳,获得20
5秒前
6秒前
辣目童子完成签到 ,获得积分10
7秒前
Akim应助苹果寇采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
晚霞常有遗憾完成签到 ,获得积分10
10秒前
11秒前
简单的丑完成签到,获得积分10
14秒前
15秒前
17秒前
Persist6578完成签到 ,获得积分10
17秒前
17秒前
18秒前
20秒前
cf2v发布了新的文献求助10
20秒前
宁静致远完成签到,获得积分10
21秒前
玛卡巴卡发布了新的文献求助10
23秒前
luohan发布了新的文献求助10
23秒前
大孙发布了新的文献求助10
23秒前
24秒前
孙燕应助ding采纳,获得10
26秒前
28秒前
29秒前
30秒前
32秒前
脑洞疼应助大孙采纳,获得10
32秒前
33秒前
33秒前
33秒前
Xuemin完成签到,获得积分10
34秒前
真诚发布了新的文献求助10
36秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863821
求助须知:如何正确求助?哪些是违规求助? 3406029
关于积分的说明 10648282
捐赠科研通 3129893
什么是DOI,文献DOI怎么找? 1726162
邀请新用户注册赠送积分活动 831511
科研通“疑难数据库(出版商)”最低求助积分说明 779854