Designing antimicrobial peptides using deep learning and molecular dynamic simulations

抗菌肽 嗜麦芽窄食单胞菌 深度学习 计算生物学 计算机科学 结构母题 人工智能 生物 细菌 生物化学 铜绿假单胞菌 遗传学
作者
Qiushi Cao,Cheng Ge,Xuejie Wang,Peta J. Harvey,Zixuan Zhang,Yuan Ma,Xianghong Wang,Xinying Jia,Mehdi Mobli,David J. Craik,Tao Jiang,Jinbo Yang,Zhiqiang Wei,Yan Wang,Shan Chang,Rilei Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:51
标识
DOI:10.1093/bib/bbad058
摘要

Abstract With the emergence of multidrug-resistant bacteria, antimicrobial peptides (AMPs) offer promising options for replacing traditional antibiotics to treat bacterial infections, but discovering and designing AMPs using traditional methods is a time-consuming and costly process. Deep learning has been applied to the de novo design of AMPs and address AMP classification with high efficiency. In this study, several natural language processing models were combined to design and identify AMPs, i.e. sequence generative adversarial nets, bidirectional encoder representations from transformers and multilayer perceptron. Then, six candidate AMPs were screened by AlphaFold2 structure prediction and molecular dynamic simulations. These peptides show low homology with known AMPs and belong to a novel class of AMPs. After initial bioactivity testing, one of the peptides, A-222, showed inhibition against gram-positive and gram-negative bacteria. The structural analysis of this novel peptide A-222 obtained by nuclear magnetic resonance confirmed the presence of an alpha-helix, which was consistent with the results predicted by AlphaFold2. We then performed a structure–activity relationship study to design a new series of peptide analogs and found that the activities of these analogs could be increased by 4–8-fold against Stenotrophomonas maltophilia WH 006 and Pseudomonas aeruginosa PAO1. Overall, deep learning shows great potential in accelerating the discovery of novel AMPs and holds promise as an important tool for developing novel AMPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稽TR发布了新的文献求助10
1秒前
2秒前
3秒前
Dunley发布了新的文献求助10
3秒前
我是老大应助DreamerKing采纳,获得10
3秒前
4秒前
桐桐应助ocdspkss采纳,获得10
7秒前
橡树发布了新的文献求助10
8秒前
香蕉觅云应助Ste采纳,获得10
8秒前
稽TR完成签到,获得积分10
9秒前
严西完成签到,获得积分10
9秒前
刘佳发布了新的文献求助10
10秒前
11秒前
11秒前
烟花应助清萍红檀采纳,获得10
11秒前
11秒前
赵十一完成签到,获得积分10
16秒前
领导范儿应助xinggui采纳,获得10
17秒前
松花蛋完成签到,获得积分20
18秒前
雪白的面包完成签到 ,获得积分10
19秒前
李慧敏完成签到,获得积分10
22秒前
xiuxiuzhang完成签到 ,获得积分10
25秒前
26秒前
26秒前
27秒前
28秒前
被门夹到鸟完成签到,获得积分10
29秒前
30秒前
冷静的棒棒糖完成签到 ,获得积分10
31秒前
飘逸平松发布了新的文献求助10
32秒前
DreamerKing发布了新的文献求助10
32秒前
Rick发布了新的文献求助10
33秒前
箖澈发布了新的文献求助10
33秒前
大个应助乱武采纳,获得10
34秒前
xinggui发布了新的文献求助10
35秒前
35秒前
兔BF完成签到,获得积分10
36秒前
xmy完成签到,获得积分10
37秒前
Lucas应助高高尔蓉采纳,获得10
40秒前
大白发布了新的文献求助10
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846014
求助须知:如何正确求助?哪些是违规求助? 3388362
关于积分的说明 10552922
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713223
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982