Mechanical ventilation intervention based on machine learning from vital signs monitoring: a scoping review

生命体征 预警系统 干预(咨询) 计算机科学 机器学习 异步通信 人工智能 数据收集 医学 医疗急救 护理部 计算机网络 数学 电信 统计 外科
作者
Marlin Ramadhan Baidillah,Pratondo Busono,Riyanto Riyanto
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (6): 062001-062001 被引量:3
标识
DOI:10.1088/1361-6501/acc11e
摘要

Abstract Asynchronous breathing (AB) during mechanical ventilation (MV) may lead to a detrimental effect on the patient’s condition. Due to the massive amount of data displayed in a large ICU, a machine learning algorithm (MLA) was proposed extensively to extract the patterns within the multiple continuous-in-time vital signs, to determine which are the variables that will predict the AB, to intervene in the MV as an early warning system, and finally to replace a highly demand of clinician’s cognition. This study reviews the MLA for prediction and detection models from vital signs monitoring data for MV intervention. Publication on MLA development on MV intervention based on vital signs monitoring to support clinicians’ decision-making process was extracted from the three electronic academic research databases Web of Science Core Collection (WoSCC), ScienceDirect, and PUBMED Central to February 2023. 838 papers from the electronic academic research databases are extracted. There are 14 review papers, while 25 related papers that pass with the quality assessments (QA). Few studies have been published that considered VS monitoring data along with the MV parameters waveforms for MV intervention. Vital signs monitoring data is not the only predictor in the developed MLA. Most studies suggested that developing the MLA for direct MV intervention requires more concern in the pre-processing of real-time data to avoid false positive and false detection than developing MLA itself.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John发布了新的文献求助10
1秒前
Hello应助atl采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
春江完成签到,获得积分10
1秒前
Orange应助茶米采纳,获得10
2秒前
___赵完成签到,获得积分10
3秒前
李爱国应助素雅采纳,获得10
5秒前
null完成签到,获得积分10
6秒前
6秒前
7秒前
OxO完成签到,获得积分10
10秒前
顺利一江发布了新的文献求助20
12秒前
LIU完成签到,获得积分10
12秒前
13秒前
飘逸的山柏完成签到 ,获得积分10
13秒前
13秒前
SyncMaster发布了新的文献求助10
15秒前
15秒前
lina完成签到 ,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
freyaaaaa应助科研通管家采纳,获得50
18秒前
科目三应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
科研通AI6应助黄婷萱采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003