亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional neural network‐based automated maxillary alveolar bone segmentation on cone‐beam computed tomography images

分割 人工智能 卷积神经网络 锥束ct 计算机科学 模式识别(心理学) 计算机断层摄影术 图像分割 计算机视觉 医学 放射科
作者
Rocharles Cavalcante Fontenele,Maurício do Nascimento Gerhardt,Fernando Fortes Pícoli,Adriaan Van Gerven,Stefanos K. Nomidis,Holger Willems,Deborah Queiroz Freitas,Reinhilde Jacobs
出处
期刊:Clinical Oral Implants Research [Wiley]
卷期号:34 (6): 565-574 被引量:38
标识
DOI:10.1111/clr.14063
摘要

To develop and assess the performance of a novel artificial intelligence (AI)-driven convolutional neural network (CNN)-based tool for automated three-dimensional (3D) maxillary alveolar bone segmentation on cone-beam computed tomography (CBCT) images.A total of 141 CBCT scans were collected for performing training (n = 99), validation (n = 12), and testing (n = 30) of the CNN model for automated segmentation of the maxillary alveolar bone and its crestal contour. Following automated segmentation, the 3D models with under- or overestimated segmentations were refined by an expert for generating a refined-AI (R-AI) segmentation. The overall performance of CNN model was assessed. Also, 30% of the testing sample was randomly selected and manually segmented to compare the accuracy of AI and manual segmentation. Additionally, the time required to generate a 3D model was recorded in seconds (s).The accuracy metrics of automated segmentation showed an excellent range of values for all accuracy metrics. However, the manual method (95% HD: 0.20 ± 0.05 mm; IoU: 95% ± 3.0; DSC: 97% ± 2.0) showed slightly better performance than the AI segmentation (95% HD: 0.27 ± 0.03 mm; IoU: 92% ± 1.0; DSC: 96% ± 1.0). There was a statistically significant difference of the time-consumed among the segmentation methods (p < .001). The AI-driven segmentation (51.5 ± 10.9 s) was 116 times faster than the manual segmentation (5973.3 ± 623.6 s). The R-AI method showed intermediate time-consumed (1666.7 ± 588.5 s).Although the manual segmentation showed slightly better performance, the novel CNN-based tool also provided a highly accurate segmentation of the maxillary alveolar bone and its crestal contour consuming 116 times less than the manual approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的人龙完成签到 ,获得积分10
7秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
30秒前
Owen应助eliott采纳,获得10
32秒前
35秒前
dovejingling完成签到,获得积分10
36秒前
无辜之柔发布了新的文献求助10
36秒前
Frank完成签到,获得积分10
37秒前
耶耶耶完成签到 ,获得积分10
38秒前
bgerivers完成签到,获得积分10
39秒前
快乐开山完成签到 ,获得积分10
44秒前
48秒前
TanFT发布了新的文献求助10
53秒前
56秒前
空里流霜不觉飞完成签到 ,获得积分10
57秒前
Wq完成签到,获得积分10
59秒前
1分钟前
TanFT完成签到,获得积分10
1分钟前
01完成签到,获得积分20
1分钟前
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
xyjf15发布了新的文献求助30
1分钟前
1分钟前
tudouni发布了新的文献求助10
2分钟前
herococa应助无辜之柔采纳,获得10
2分钟前
tudouni完成签到,获得积分10
2分钟前
上官若男应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
田様应助无辜之柔采纳,获得10
2分钟前
66发完成签到,获得积分10
2分钟前
嘿嘿江完成签到 ,获得积分10
2分钟前
俭朴的元绿完成签到 ,获得积分10
2分钟前
和风完成签到 ,获得积分10
2分钟前
下一块蛋糕完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Medical English Clear and Simple(By Melodie Hull) 400
Oxford English for Careers: Nursing / Medicine • 🩺 出版社:Oxford University Press • 400
English in Medicine(作者:Eric H. Glendinning) 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927703
求助须知:如何正确求助?哪些是违规求助? 3472431
关于积分的说明 10972489
捐赠科研通 3202269
什么是DOI,文献DOI怎么找? 1769307
邀请新用户注册赠送积分活动 858017
科研通“疑难数据库(出版商)”最低求助积分说明 796259