A novel detection model for abnormal network traffic based on bidirectional temporal convolutional network

计算机科学 人工智能 卷积神经网络 交通生成模型 数据挖掘 网络模型 入侵检测系统 精确性和召回率 构造(python库) 交通分类 深度学习 机器学习 实时计算 网络数据包 计算机网络
作者
Jinfu Chen,Tianxiang Lv,Saihua Cai,Luo Song,Shang Yin
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:157: 107166-107166 被引量:19
标识
DOI:10.1016/j.infsof.2023.107166
摘要

The increasingly complex and diverse network environment has increased traffic intrusion behaviors, but the traditional machine learning-based model has the problems of time-consuming and low detection accuracy due to the need of manually selecting features. Therefore, it is very important to construct an automatically abnormal network traffic detection model with a high detection accuracy. The goal of this paper is to train the network traffic through deep learning technology to generate an automatic abnormal network traffic detection model without manual design of features. We propose an abnormal network traffic detection model called BiTCN based on bidirectional time convolution network, it first uses temporal convolutional network (TCN) model to better grasp the sequence characteristics of network traffic, and then uses Exponential Linear Unit (ELU) activation function to replace ReLU in the model training stage to avoid the problem of neuron “death” leading to the reduction of detection accuracy, as well as improves the original one-way model to a two-way model to capture the two-way semantic fusion characteristics of network traffic. We evaluate the efficiency and effectiveness of the proposed BiTCN model by comparing it with different models on the CTU and USTC-TFC2016 datasets. The experimental results show that the proposed BiTCN model outperforms other models in terms of the precision, accuracy, recall and F1-measure. In this paper, we propose a novel detection model for abnormal network traffic based on bidirectional temporal convolutional network , it solves some shortcomings and limitations of existing models, and obtains a high detection accuracy of abnormal network traffic with a high stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
多情蓝发布了新的文献求助10
刚刚
Vince发布了新的文献求助10
刚刚
熠烁完成签到 ,获得积分10
1秒前
南木_完成签到,获得积分10
1秒前
我不会乱起名字的完成签到,获得积分10
3秒前
竹竹发布了新的文献求助10
3秒前
PA应助李俊枫采纳,获得10
5秒前
火星上的飞兰完成签到,获得积分10
5秒前
顺利发布了新的文献求助10
6秒前
纯真紫南发布了新的文献求助10
6秒前
猫猫统治世界完成签到,获得积分10
8秒前
137号完成签到 ,获得积分20
8秒前
李健应助anhuiwsy采纳,获得10
9秒前
炙热念双完成签到 ,获得积分10
9秒前
爱科研的罗罗完成签到,获得积分10
11秒前
laohu2发布了新的文献求助200
11秒前
light完成签到 ,获得积分10
12秒前
14秒前
Ava应助逝月采纳,获得10
14秒前
Rainbow完成签到,获得积分10
15秒前
18秒前
TANG发布了新的文献求助10
18秒前
111完成签到,获得积分10
19秒前
伍盎完成签到,获得积分10
21秒前
jiemy完成签到,获得积分10
21秒前
青青完成签到 ,获得积分10
22秒前
adb完成签到,获得积分10
23秒前
susu发布了新的文献求助10
23秒前
奋斗的凡完成签到 ,获得积分10
23秒前
干净柏柳完成签到 ,获得积分10
24秒前
SYLH应助伍盎采纳,获得10
25秒前
25秒前
laohu2完成签到,获得积分10
26秒前
西瓜霜完成签到 ,获得积分10
26秒前
28秒前
拼搏的潘子完成签到,获得积分10
29秒前
竹竹完成签到,获得积分10
29秒前
逝月发布了新的文献求助10
29秒前
纯真紫南完成签到,获得积分20
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845856
求助须知:如何正确求助?哪些是违规求助? 3388210
关于积分的说明 10552030
捐赠科研通 3108791
什么是DOI,文献DOI怎么找? 1713127
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927