亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analyzing students' attention by gaze tracking and object detection in classroom teaching

凝视 计算机科学 班级(哲学) 卷积神经网络 人工智能 点(几何) 对象(语法) 目标检测 透视图(图形) 跟踪(教育) 眼动 分割 独创性 计算机视觉 人机交互 心理学 创造力 社会心理学 教育学 几何学 数学
作者
Hui Xu,Junjie Zhang,Hui Sun,Miao Qi,Jun Kong
出处
期刊:Data technologies and applications [Emerald Publishing Limited]
卷期号:57 (5): 643-667 被引量:5
标识
DOI:10.1108/dta-09-2021-0236
摘要

Purpose Attention is one of the most important factors to affect the academic performance of students. Effectively analyzing students' attention in class can promote teachers' precise teaching and students' personalized learning. To intelligently analyze the students' attention in classroom from the first-person perspective, this paper proposes a fusion model based on gaze tracking and object detection. In particular, the proposed attention analysis model does not depend on any smart equipment. Design/methodology/approach Given a first-person view video of students' learning, the authors first estimate the gazing point by using the deep space–time neural network. Second, single shot multi-box detector and fast segmentation convolutional neural network are comparatively adopted to accurately detect the objects in the video. Third, they predict the gazing objects by combining the results of gazing point estimation and object detection. Finally, the personalized attention of students is analyzed based on the predicted gazing objects and the measurable eye movement criteria. Findings A large number of experiments are carried out on a public database and a new dataset that is built in a real classroom. The experimental results show that the proposed model not only can accurately track the students' gazing trajectory and effectively analyze the fluctuation of attention of the individual student and all students but also provide a valuable reference to evaluate the process of learning of students. Originality/value The contributions of this paper can be summarized as follows. The analysis of students' attention plays an important role in improving teaching quality and student achievement. However, there is little research on how to automatically and intelligently analyze students' attention. To alleviate this problem, this paper focuses on analyzing students' attention by gaze tracking and object detection in classroom teaching, which is significant for practical application in the field of education. The authors proposed an effectively intelligent fusion model based on the deep neural network, which mainly includes the gazing point module and the object detection module, to analyze students' attention in classroom teaching instead of relying on any smart wearable device. They introduce the attention mechanism into the gazing point module to improve the performance of gazing point detection and perform some comparison experiments on the public dataset to prove that the gazing point module can achieve better performance. They associate the eye movement criteria with visual gaze to get quantifiable objective data for students' attention analysis, which can provide a valuable basis to evaluate the learning process of students, provide useful learning information of students for both parents and teachers and support the development of individualized teaching. They built a new database that contains the first-person view videos of 11 subjects in a real classroom and employ it to evaluate the effectiveness and feasibility of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
45秒前
Carl发布了新的文献求助10
51秒前
善学以致用应助那只兔采纳,获得10
53秒前
orixero应助Carl采纳,获得10
1分钟前
Carl完成签到,获得积分10
1分钟前
1分钟前
那只兔发布了新的文献求助10
1分钟前
Jasper应助科研通管家采纳,获得30
2分钟前
那只兔完成签到,获得积分10
3分钟前
Sssssss完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
刘文思发布了新的文献求助10
4分钟前
4分钟前
Virtual应助刘文思采纳,获得10
4分钟前
4分钟前
4分钟前
无花果发布了新的文献求助10
6分钟前
6分钟前
机智的孤兰完成签到 ,获得积分10
6分钟前
www完成签到 ,获得积分10
6分钟前
kbcbwb2002完成签到,获得积分10
7分钟前
完美世界应助昵称采纳,获得10
7分钟前
7分钟前
dup完成签到,获得积分10
8分钟前
无花果完成签到,获得积分10
8分钟前
8分钟前
8分钟前
昵称发布了新的文献求助10
8分钟前
华仔应助科研通管家采纳,获得10
8分钟前
昵称完成签到,获得积分10
8分钟前
科研通AI6应助善良的凡旋采纳,获得10
9分钟前
Ivy完成签到,获得积分10
9分钟前
9分钟前
勤劳的小猫咪完成签到,获得积分10
9分钟前
jiangjiang完成签到 ,获得积分10
9分钟前
wjzhan完成签到,获得积分10
9分钟前
10分钟前
10分钟前
英俊的铭应助刘文思采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4484822
求助须知:如何正确求助?哪些是违规求助? 3940556
关于积分的说明 12220624
捐赠科研通 3596069
什么是DOI,文献DOI怎么找? 1977769
邀请新用户注册赠送积分活动 1014730
科研通“疑难数据库(出版商)”最低求助积分说明 907984