Analyzing students' attention by gaze tracking and object detection in classroom teaching

凝视 计算机科学 班级(哲学) 卷积神经网络 人工智能 点(几何) 对象(语法) 目标检测 透视图(图形) 跟踪(教育) 眼动 分割 独创性 计算机视觉 人机交互 心理学 创造力 社会心理学 教育学 几何学 数学
作者
Hui Xu,Junjie Zhang,Hui Sun,Miao Qi,Jun Kong
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:57 (5): 643-667 被引量:5
标识
DOI:10.1108/dta-09-2021-0236
摘要

Purpose Attention is one of the most important factors to affect the academic performance of students. Effectively analyzing students' attention in class can promote teachers' precise teaching and students' personalized learning. To intelligently analyze the students' attention in classroom from the first-person perspective, this paper proposes a fusion model based on gaze tracking and object detection. In particular, the proposed attention analysis model does not depend on any smart equipment. Design/methodology/approach Given a first-person view video of students' learning, the authors first estimate the gazing point by using the deep space–time neural network. Second, single shot multi-box detector and fast segmentation convolutional neural network are comparatively adopted to accurately detect the objects in the video. Third, they predict the gazing objects by combining the results of gazing point estimation and object detection. Finally, the personalized attention of students is analyzed based on the predicted gazing objects and the measurable eye movement criteria. Findings A large number of experiments are carried out on a public database and a new dataset that is built in a real classroom. The experimental results show that the proposed model not only can accurately track the students' gazing trajectory and effectively analyze the fluctuation of attention of the individual student and all students but also provide a valuable reference to evaluate the process of learning of students. Originality/value The contributions of this paper can be summarized as follows. The analysis of students' attention plays an important role in improving teaching quality and student achievement. However, there is little research on how to automatically and intelligently analyze students' attention. To alleviate this problem, this paper focuses on analyzing students' attention by gaze tracking and object detection in classroom teaching, which is significant for practical application in the field of education. The authors proposed an effectively intelligent fusion model based on the deep neural network, which mainly includes the gazing point module and the object detection module, to analyze students' attention in classroom teaching instead of relying on any smart wearable device. They introduce the attention mechanism into the gazing point module to improve the performance of gazing point detection and perform some comparison experiments on the public dataset to prove that the gazing point module can achieve better performance. They associate the eye movement criteria with visual gaze to get quantifiable objective data for students' attention analysis, which can provide a valuable basis to evaluate the learning process of students, provide useful learning information of students for both parents and teachers and support the development of individualized teaching. They built a new database that contains the first-person view videos of 11 subjects in a real classroom and employ it to evaluate the effectiveness and feasibility of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
道松先生发布了新的文献求助10
刚刚
刚刚
cfg发布了新的文献求助10
刚刚
完美背包发布了新的文献求助10
1秒前
溪边的树完成签到 ,获得积分10
1秒前
英姑应助impending采纳,获得10
1秒前
霸气的煜祺完成签到,获得积分10
1秒前
2秒前
yanglina062完成签到,获得积分10
2秒前
苗条的善斓完成签到,获得积分10
3秒前
3秒前
yu完成签到,获得积分10
4秒前
怕孤独的傲丝完成签到,获得积分10
4秒前
123完成签到,获得积分20
4秒前
乐乐应助xxxxxxx采纳,获得10
4秒前
落后元绿完成签到,获得积分10
4秒前
自由的雪发布了新的文献求助10
4秒前
华仔应助lsj采纳,获得10
4秒前
Jeffery426完成签到,获得积分10
4秒前
春风发布了新的文献求助10
4秒前
科研通AI6应助gggggggbao采纳,获得10
5秒前
wedx23完成签到,获得积分10
5秒前
豆豆小baby完成签到,获得积分10
5秒前
5秒前
lydy1993完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
领导范儿应助duming采纳,获得10
7秒前
Z666666666完成签到 ,获得积分10
8秒前
8秒前
Ww发布了新的文献求助10
8秒前
小泓完成签到,获得积分10
8秒前
小王完成签到,获得积分10
9秒前
研友_VZG7GZ应助elodie采纳,获得10
10秒前
10秒前
LYH完成签到,获得积分10
10秒前
qyhl完成签到 ,获得积分10
10秒前
11秒前
zhaokui2049完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483474
求助须知:如何正确求助?哪些是违规求助? 4584186
关于积分的说明 14395271
捐赠科研通 4513881
什么是DOI,文献DOI怎么找? 2473685
邀请新用户注册赠送积分活动 1459720
关于科研通互助平台的介绍 1433126