亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterizing agri-forestry systems in Portugal through high-resolution orthophotos and convolutional neural networks

正射影像 试验装置 计算机科学 卷积神经网络 随机森林 土地覆盖 林业 遥感 过度拟合 地图学 人工智能 人工神经网络 地理 土地利用 生态学 生物
作者
Tiago G. Morais,Tiago Domingos,Ricardo F. M. Teixeira
标识
DOI:10.1117/12.2633872
摘要

The Portuguese agri-forestry system Montado occupies about 730,000 hectares, which is about 8% of total area of Portugal. The maintenance of this biodiverse and complex land cover system is threatened, among other causes, due to frequent tillage to manage shrubs encroachment. In order to characterize Montado areas, we develop a neural network algorithm for identifying regions with trees, shrubs, covered and/or bare soil in grasslands. For this purpose, we used high-resolution RGB orthophotos (spatial resolution of 25 cm) that cover mainland Portugal. They were collected during the summer and autumn of 2018. The labelling of the used images was performed through an unsupervised method (Gaussian mixtures), which was validated through visual interpretation. The deep convolutional neural networks architecture used was U-net, which has been used in the literature to segment remote sensing images with a high performance. To train models, 800 orthophotos with 10,000 m2 each were used. They were divided between training and test set. A hyperparameter tuning was performed, namely the number of filters, dropout rate, batch size and the training/test partition percentage. In the best model, the overall classification performance (measured on the test set) was 89%, the recall 90% and the mean intersection of the union of 79%. Nevertheless, identification of shrubs had the lowest performance (accuracy of 85%), which are mainly confused with trees that have similar spectral signature. This model enables the identification of the status of Montado ecosystem regarding shrub encroachment for better future management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁者无惧完成签到 ,获得积分10
1秒前
4秒前
小马甲应助科研通管家采纳,获得10
10秒前
14秒前
山橘月发布了新的文献求助10
19秒前
芝麻汤圆完成签到,获得积分10
24秒前
自然之水完成签到,获得积分10
37秒前
54秒前
Kevin发布了新的文献求助10
59秒前
糖伯虎完成签到 ,获得积分10
1分钟前
binyao2024完成签到,获得积分10
2分钟前
王子娇完成签到 ,获得积分10
2分钟前
穆振家完成签到,获得积分10
2分钟前
豌豆发布了新的文献求助10
2分钟前
3分钟前
don完成签到 ,获得积分10
3分钟前
豌豆发布了新的文献求助10
3分钟前
wanjingwan完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
也曦发布了新的文献求助10
4分钟前
11发布了新的文献求助10
4分钟前
11发布了新的文献求助10
4分钟前
4分钟前
4分钟前
krajicek发布了新的文献求助10
4分钟前
丰富的瑾瑜完成签到,获得积分10
5分钟前
flyingpig发布了新的文献求助10
5分钟前
krajicek完成签到,获得积分10
5分钟前
我是你爷爷完成签到,获得积分10
5分钟前
小白菜完成签到,获得积分10
5分钟前
5分钟前
andrele发布了新的文献求助10
5分钟前
5分钟前
SCUWJ完成签到,获得积分10
5分钟前
伍慕儿发布了新的文献求助10
5分钟前
orixero应助nhh采纳,获得10
5分钟前
伍慕儿完成签到,获得积分10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244180
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483