Effective plant disease diagnosis using Vision Transformer trained with leafy-generative adversarial network-generated images

计算机科学 变压器 生成对抗网络 人工智能 多叶的 生成语法 叶菜 对抗制 计算机视觉 模式识别(心理学) 机器学习 图像(数学) 植物 生物 工程类 食品科学 电气工程 电压
作者
Aadarsh Kumar Singh,A. D. P. Rao,Pratik Chattopadhyay,Rahul Maurya,Lokesh Singh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:254: 124387-124387 被引量:4
标识
DOI:10.1016/j.eswa.2024.124387
摘要

Agriculture, as the foundation of human civilization, is critical to the global economy, providing food for billions. Plant diseases, caused by factors such as bacteria, fungi, viruses, and others, loom large over crop yields, jeopardizing farmers' livelihoods worldwide. Rapid and accurate identification of these diseases is critical for agricultural productivity protection and to date, several automated plant disease diagnosis methods have been developed by researchers worldwide. However, the issue of having limited labelled datasets for certain plant leaf diseases poses a significant challenge in training classification models effectively. This scarcity often results in class imbalance which adversely affects a model's ability to accurately predict all the disease classes. It appears there is a need to explore synthetic data generation techniques to train the model for making a better prediction. Further, the disease prediction model should be lightweight so that it can be conveniently integrated with low-end devices with less computational power that farmers can afford to purchase. In this work, we aim to develop an effective neural augmentation model that can render synthetic disease patterns on uninfected leaf images thereby enhancing the leaf disease dataset by adding artificial samples corresponding to those disease classes for which only minor ground truth information is available. Our work extends the state-of-the-art by introducing a new model for leaf disease augmentation, termed "LeafyGAN", that comprises two key elements: a segmentation model and a disease translation model, both of which are GAN-based. The segmentation model is a pix2pix GAN that is trained to separate foreground leaf images from the background and is trained using a combination of L1 loss and standard GAN loss. The disease translation model is a CycleGAN which is trained using a combination of adversarial loss and cycle consistency loss, which uses the generated segmented mask to render synthetic disease patterns to the extracted leaf regions. A lightweight MobileViT model trained using this augmented data has been seen to perform disease diagnosis with a remarkable accuracy of 99.92% on the PlantVillage dataset and 75.72% on the PlantDoc dataset. Notably, our model achieves an accuracy that is comparable with the recent CNN and Transformer-based models with a significantly lesser number of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
3秒前
哦 我的天完成签到,获得积分0
4秒前
5秒前
Cloud发布了新的文献求助10
5秒前
听南完成签到,获得积分20
5秒前
yanliu95发布了新的文献求助10
6秒前
Orange应助积极向上的阿闯采纳,获得10
7秒前
冷静映安完成签到,获得积分10
8秒前
听南发布了新的文献求助10
8秒前
HuangJunfei发布了新的文献求助10
9秒前
9秒前
wkkkkkkk发布了新的文献求助10
9秒前
月亮发布了新的文献求助20
11秒前
一一应助semigreen采纳,获得10
12秒前
12秒前
12秒前
13秒前
科目三应助健壮的尔烟采纳,获得10
13秒前
我要向阳而生完成签到 ,获得积分10
14秒前
ouwen发布了新的文献求助10
15秒前
cdercder应助嗯嗯采纳,获得10
16秒前
科研通AI2S应助loen采纳,获得10
17秒前
kk发布了新的文献求助10
17秒前
17秒前
划水的鱼发布了新的文献求助10
18秒前
luxiaoyu发布了新的文献求助10
18秒前
123完成签到,获得积分20
19秒前
20秒前
20秒前
Wu完成签到,获得积分10
21秒前
Leoling完成签到,获得积分20
21秒前
斯文败类应助Emma采纳,获得10
22秒前
23秒前
ouwen完成签到,获得积分10
23秒前
23秒前
科研助手6应助xuan采纳,获得10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800140
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10325049
捐赠科研通 3061931
什么是DOI,文献DOI怎么找? 1680614
邀请新用户注册赠送积分活动 807158
科研通“疑难数据库(出版商)”最低求助积分说明 763509