Exploring intricate connectivity patterns for cognitive functioning and neurological disorders: incorporating frequency-domain NC method into fMRI analysis

功能磁共振成像 因果关系(物理学) 人类连接体项目 认知 人工智能 计算机科学 心理学 格兰杰因果关系 多元统计 频域 神经科学 认知心理学 机器学习 功能连接 物理 量子力学 计算机视觉
作者
Bocheng Wang
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (5)
标识
DOI:10.1093/cercor/bhae195
摘要

Abstract This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer’s disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ddrose采纳,获得10
刚刚
充电宝应助称心寒松采纳,获得10
1秒前
3秒前
Lucas应助Angelina采纳,获得10
4秒前
小曹同学要加油完成签到 ,获得积分20
5秒前
人间枝头完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
充电宝应助宋晓静采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助奋斗的雅柏采纳,获得10
8秒前
领导范儿应助李俊枫采纳,获得30
9秒前
9秒前
初夏完成签到,获得积分10
10秒前
Ettrickfield发布了新的文献求助20
10秒前
GWZZ发布了新的文献求助10
10秒前
10秒前
称心寒松发布了新的文献求助10
11秒前
学术laji发布了新的文献求助10
11秒前
13秒前
啊强完成签到 ,获得积分10
13秒前
舆上帝同行完成签到,获得积分10
14秒前
tczw667完成签到,获得积分10
14秒前
白石杏完成签到,获得积分10
16秒前
hawaii66完成签到,获得积分10
16秒前
Bryce完成签到 ,获得积分10
17秒前
maozhehai29999完成签到,获得积分10
17秒前
17秒前
chloe完成签到 ,获得积分10
19秒前
西瓜刀完成签到 ,获得积分10
20秒前
20秒前
21秒前
细腻的海雪完成签到,获得积分10
22秒前
优雅冰蝶完成签到,获得积分10
23秒前
一氧化二氢完成签到,获得积分10
23秒前
25秒前
冰魂应助neiz采纳,获得10
26秒前
Verbleu完成签到,获得积分10
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790