The WOA-CNN-LSTM-Attention Model for Predicting GNSS Water Vapor

全球导航卫星系统应用 计算机科学 遥感 大气模式 人工智能 气象学 地质学 全球定位系统 电信 地理
作者
Xiangrong Yan,Weifang Yang,Motong Gao,Nan Ding,Wenyuan Zhang,Longjiang Li,Yuhao Hou,Kefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3406694
摘要

Precipitable water vapor (PWV), as an important representative parameter of atmospheric water vapor contents, can be obtained by means of Global Navigation Satellite Systems (GNSS) using both ground-based and space-borne observation techniques. However, the PWV prediction models currently accessible tend to be simplistic combinations or individual models. In this study, we develop a WOA-CNN-LSTM-Attention model to predict PWV, which takes the sixteen GNSS PWV values near the HKKP station as characteristic parameters and the spatial relationship between the point of interest and its neighboring GNSS stations into consideration. An optimal model via the whale optimization algorithm (WOA) is investigated by using a wavelet analysis to separate noises, through combining convolutional neural network (CNN), long short-term memory neural network (LSTM) and attention mechanism. Results show that considerable improvement in the prediction accuracy has been achieved through a comparison between CNN-LSTM-Attention and the conventional LSTM and CNN-LSTM models. In terms of long-term predictability, CNN-LSTM-Attention is proven to be a superior model when 8 features are incorporated. The model's root mean square error (RMSE) is 2.30 mm which is reduced by 20.42 % than in the case of 0 feature is used. As a further analysis, we also examine the prediction performance of various models for hourly PWV using 7, 15, 30, 60 and 90 days of data as different lengths of training. The results show that CNN-LSTM-Attention has a better prediction effect when the training length is 30 days, the RMSE is 0.74 mm and the Nash-Sutcliffe efficiency coefficient (NSE) is 0.98.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李家酥铺发布了新的文献求助10
刚刚
1秒前
4秒前
幽默的友灵完成签到,获得积分10
4秒前
4秒前
缓慢白曼完成签到 ,获得积分10
6秒前
011关闭了011文献求助
6秒前
7秒前
8秒前
子非鱼完成签到 ,获得积分10
8秒前
fan发布了新的文献求助10
9秒前
小涵完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
13秒前
喝酒的二胖完成签到,获得积分10
14秒前
李爱国应助岁安安安采纳,获得10
16秒前
小蘑菇应助走四方采纳,获得10
18秒前
24秒前
25秒前
26秒前
狮子卷卷完成签到,获得积分10
29秒前
哇塞发布了新的文献求助10
30秒前
Amorphous发布了新的文献求助10
30秒前
天津中医药峰完成签到,获得积分10
31秒前
呼延谷波发布了新的文献求助10
32秒前
32秒前
庭中踏雪来完成签到 ,获得积分10
32秒前
通通真行完成签到,获得积分10
33秒前
34秒前
CNJX完成签到,获得积分10
35秒前
邦邦完成签到 ,获得积分10
36秒前
011发布了新的文献求助10
36秒前
Akim应助馒头采纳,获得10
39秒前
^_^coco发布了新的文献求助30
39秒前
lz完成签到,获得积分10
40秒前
40秒前
Kate发布了新的文献求助10
40秒前
呼延谷波完成签到 ,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3920456
求助须知:如何正确求助?哪些是违规求助? 3465412
关于积分的说明 10937966
捐赠科研通 3193907
什么是DOI,文献DOI怎么找? 1764822
邀请新用户注册赠送积分活动 855270
科研通“疑难数据库(出版商)”最低求助积分说明 794662