A Generative Adversarial Networks Model Based Evolutionary Algorithm for Multimodal Multi-Objective Optimization

对抗制 生成语法 计算机科学 进化算法 人工智能 优化算法 多目标优化 算法 机器学习 数学优化 数学
作者
Qianlong Dang,Guanghui Zhang,Ling Wang,Shuai Yang,Tao Zhan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:10
标识
DOI:10.1109/tetci.2024.3397996
摘要

The key to solving multimodal multi-objective optimization problems is to achieve good diversity in the decision space. However, the existing algorithms usually adopt the reproduction operation based on random mechanism, which do not make full use of the distribution features of promising solutions in the population, resulting in the defects of the diversity of the obtained Parteo optimal solution sets. In order to solve the above problem, this paper proposes a multimodal multi-objective optimization evolutionary algorithm (MMOEA) based on generative adversarial networks (GANs). Specifically, we firstly design a classification strategy to distinguish good solutions from poor solutions. The solutions in the population are classified as real samples and fake samples by non-dominated selection sorting based on special crowding distance, and the training data of GANs are obtained. Secondly, a GANs-based offspring generation method is proposed. Through the adversarial training of GANs, the generator can simulate the distribution of promising solutions in the population and generate offspring with good diversity. Thirdly, an environment selection strategy based on GANs is constructed. By sorting the classification probability of the solutions output by the discriminator, the population are selected and updated. Finally, the proposed algorithm is compared with seven other competitive multimodal multi-objective optimization evolutionary algorithms on the CEC 2019 test suite and a real-word problem, and experimental results indicate its superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
核桃发布了新的文献求助50
1秒前
3秒前
科研通AI5应助哈哈哈采纳,获得10
3秒前
陈文娜发布了新的文献求助10
4秒前
6秒前
nn完成签到,获得积分10
6秒前
CC完成签到 ,获得积分10
8秒前
bonhiver完成签到 ,获得积分10
9秒前
mof发布了新的文献求助10
9秒前
哈哈哈发布了新的文献求助10
10秒前
kindong发布了新的文献求助10
12秒前
在水一方应助幼稚采纳,获得10
12秒前
苗条的紫文完成签到,获得积分10
13秒前
慕青应助xxxhhaoxxx采纳,获得10
14秒前
洁洁完成签到,获得积分20
15秒前
缥缈的断天完成签到,获得积分10
16秒前
17秒前
tdx493发布了新的文献求助10
17秒前
18秒前
啊鑫完成签到,获得积分10
20秒前
LYH完成签到,获得积分10
21秒前
1.1发布了新的文献求助10
22秒前
林加雄发布了新的文献求助10
23秒前
23秒前
如梦如画发布了新的文献求助10
25秒前
Y哦莫哦莫完成签到,获得积分10
29秒前
xxxhhaoxxx发布了新的文献求助10
29秒前
11完成签到,获得积分10
30秒前
SYSUer发布了新的文献求助10
30秒前
31秒前
慕青应助kindong采纳,获得10
33秒前
34秒前
wbing完成签到,获得积分10
35秒前
36秒前
李华完成签到,获得积分10
37秒前
GL发布了新的文献求助10
38秒前
王九八完成签到,获得积分10
41秒前
闪闪的沛槐完成签到,获得积分10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1500
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4339044
求助须知:如何正确求助?哪些是违规求助? 3848009
关于积分的说明 12017290
捐赠科研通 3489114
什么是DOI,文献DOI怎么找? 1914929
邀请新用户注册赠送积分活动 957846
科研通“疑难数据库(出版商)”最低求助积分说明 858203