Movie recommendation based on ALS collaborative filtering recommendation algorithm with deep learning model

协同过滤 计算机科学 推荐系统 人工智能 深度学习 算法 多媒体 机器学习
作者
Li Ni,Yinshui Xia
出处
期刊:Entertainment Computing [Elsevier BV]
卷期号:51: 100715-100715 被引量:7
标识
DOI:10.1016/j.entcom.2024.100715
摘要

Development of recommender systems has recently emerged as a prominent study field that has drawn the attention of several scientists and researchers worldwide. Various fields, such as music, movies, books, news, search queries, and commercial goods, employ recommender systems. One of the well-liked and effective RS strategies is the collaborative filtering algorithm, which seeks out users who are quite similar to active one to propose products. This study suggests a unique method for recommending films based on analysis of user preference data that combines ALS collaborative filtering with deep learning techniques. The input in this case is gathered as web data based on previously performed user searches and then processed for noise reduction and normalisation. Convolutional multimodal auto multilayer graph with ALS collaborative filtering (CMAMG_ALSCF) was used to classify this processed data according to user evaluations and interests. Movies that are related to the interests of users are recommended by examining the similarity between users and other users or the similarity between movies and other movies. For several movie recommendation datasets, experimental analysis is done in terms of training accuracy, validation accuracy, RMSE, and average precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whitexue完成签到,获得积分10
刚刚
1秒前
妮妮发布了新的文献求助10
2秒前
2秒前
m木宁木蒙应助小石头采纳,获得20
2秒前
2秒前
2秒前
落雪芊芊发布了新的文献求助30
3秒前
敏感的曼岚完成签到 ,获得积分20
4秒前
小马甲应助傻傻的哈密瓜采纳,获得10
4秒前
研友_nqrKQZ发布了新的文献求助10
5秒前
英俊的铭应助swy采纳,获得10
5秒前
动漫大师发布了新的文献求助10
5秒前
NexusExplorer应助现代雁桃采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
思源应助叶子采纳,获得10
7秒前
冷酷的柜门完成签到,获得积分20
7秒前
科研通AI5应助悦耳的小夏采纳,获得10
8秒前
怿愀完成签到,获得积分10
9秒前
9秒前
挚zhi发布了新的文献求助10
9秒前
大气白翠完成签到,获得积分10
9秒前
一只王火火完成签到,获得积分10
10秒前
10秒前
认真子默发布了新的文献求助10
10秒前
roy_chiang完成签到,获得积分0
10秒前
酸奶辣条发布了新的文献求助10
11秒前
11秒前
小医小鱼完成签到,获得积分10
12秒前
ZZG完成签到,获得积分10
12秒前
13秒前
Mia完成签到 ,获得积分10
14秒前
15秒前
zhhh发布了新的文献求助10
17秒前
甜甜海豚发布了新的文献求助10
17秒前
背后故事完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790056
求助须知:如何正确求助?哪些是违规求助? 3334710
关于积分的说明 10271870
捐赠科研通 3051185
什么是DOI,文献DOI怎么找? 1674513
邀请新用户注册赠送积分活动 802634
科研通“疑难数据库(出版商)”最低求助积分说明 760828