已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Scheduling of Container Transportation Vehicles in Surface Coal Mines Based on the GA–GWO Hybrid Algorithm

遗传算法 渡线 容器(类型理论) 调度(生产过程) 煤矿开采 营业成本 计算机科学 算法 数学优化 工程类 数学 废物管理 机械工程 人工智能
作者
Binwen Hu,Zonghui Xiong,Aihong Sun,Yiping Yuan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (10): 3986-3986 被引量:3
标识
DOI:10.3390/app14103986
摘要

The coal loading operation of the coal preparation plant of an open pit coal mine causes chaos in coal mine vehicle scheduling due to the unreasonable arrival times of outgoing and container transportation vehicles. To further reduce the length of time that vehicle transportation equipment waits for each other and to reduce the total cost of container transportation, the optimisation model of container transportation vehicle scheduling in an open pit coal mine is constructed to minimise the minimum sum of the shortest time of container reversal and the lowest cost of container transportation. To accurately measure the total cost of container backward transportation, waiting time and unit waiting time cost parameters are introduced, and the total cost of container transportation is measured using the transportation cost and the waiting time cost transformation method. An improved grey wolf algorithm is proposed to speed up the convergence of the algorithm and improve the quality of the solution. When employing the genetic algorithm (GA) and grey wolf optimisation algorithm (GWO) for optimising the scheduling of container transport vehicles in coal mines, it is noted that while the GA can achieve the global optimum, its convergence speed is relatively slow. Conversely, the GWO converges more quickly, but it tends to be trapped in local optima. To accelerate the convergence speed of the algorithm and improve the solution quality, a hybrid GA−GWO algorithm is proposed, which introduces three genetic operations of selection, crossover, and mutation of GA into the GWO algorithm to prevent the algorithm from falling into the local optimum due to the fall; at the same time, it introduces hunting and attacking operations into the elite retention strategy of GA, which improves the stability of the algorithm’s global convergence. Analysis indicates that, compared to SA, GWO, and GA, the hybrid algorithm enhances optimisation speed by 43.1%, 46.2%, and 43.7%, increases optimisation accuracy by 4.12%, 6.1%, and 3.2%, respectively, and reduces the total container reversal time by 35.46, 22, and 31 h. The total cost of container transportation is reduced by 2437 RMB, 3512 RMB, and 1334 RMB, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sansan完成签到,获得积分10
刚刚
领导范儿应助科研通管家采纳,获得10
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
粥粥完成签到 ,获得积分10
4秒前
科研通AI2S应助只道寻常采纳,获得10
9秒前
13秒前
Banbor2021完成签到,获得积分10
15秒前
17秒前
zho发布了新的文献求助30
20秒前
兆兆完成签到 ,获得积分10
20秒前
Forever发布了新的文献求助10
21秒前
一介尘埃完成签到 ,获得积分10
25秒前
26秒前
26秒前
27秒前
大脸兔狲完成签到 ,获得积分10
29秒前
31秒前
鱼儿发布了新的文献求助10
32秒前
35秒前
wangchaofk发布了新的文献求助10
35秒前
Moonchild完成签到 ,获得积分10
39秒前
AM发布了新的文献求助30
42秒前
hhl完成签到 ,获得积分10
43秒前
平底锅攻击完成签到 ,获得积分10
44秒前
zzzzzz完成签到 ,获得积分10
44秒前
科研通AI5应助鱼儿采纳,获得10
44秒前
45秒前
shasha完成签到,获得积分10
48秒前
大个应助AM采纳,获得10
50秒前
58秒前
59秒前
无花果应助流流124141采纳,获得10
1分钟前
shasha发布了新的文献求助10
1分钟前
羽羽完成签到 ,获得积分10
1分钟前
陌上尘开完成签到 ,获得积分10
1分钟前
完美世界应助椰果采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780726
求助须知:如何正确求助?哪些是违规求助? 3326224
关于积分的说明 10226255
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723