A Low-Cost Fully Integer-Based CNN Accelerator on FPGA for Real-Time Traffic Sign Recognition

计算机科学 现场可编程门阵列 量化(信号处理) 交通标志识别 卷积神经网络 硬件加速 计算机工程 加速 计算机硬件 计算 残余物 嵌入式系统 实时计算 算法 并行计算 人工智能 交通标志 符号(数学) 数学分析 数学
作者
Jaemyung Kim,Jin-Ku Kang,Yongwoo Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 84626-84634 被引量:12
标识
DOI:10.1109/access.2022.3197906
摘要

Traffic sign recognition (TSR) technology allows the vehicle to recognize road signs through a camera and use it for driving. For traffic safety, TSR is one of the core technologies constituting advanced driver assistance systems (ADAS), and several researches have been studied. The advent of convolutional neural networks (CNNs) has opened up new possibilities in automotive environments, especially for ADAS. However, deploying a real-time TSR application in resource-constrained ADAS is challenging because most CNNs require high computing resources and memory usage. To address this problem, some works have been studied to consider optimization in embedded platforms, but existing works used many hardware resources or showed low computation performance. In this paper, we propose a low-cost CNN-based real-time TSR hardware accelerator. Firstly, we extend a novel hardware-friendly quantization method to reduce computational complexity. The quantization method can reconstruct the CNN so that all operations, including the skip connection path of residual blocks, use only integer arithmetic and reduce the computational overhead by replacing the quantization affine mapping process with a shift operation. Secondly, the proposed hardware accelerator applied two parallelization strategies to balance real-time inference and resource consumption. In addition, we present a simple and effective hardware design scheme that handles the skip connection path of residual blocks. This design scheme can optimize the dataflow of the skip connection path and reduce additional internal memory usage. Experimental results show that the reconstructed fully integer-based CNN only requires 24M integer operations (IOPs) and possesses a model size of 0.17MB. Compared with the previous work, the proposed CNN model size was reduced by ×105, and the number of operations was reduced by ×58. In addition, the proposed CNN can achieve a TSR accuracy of 99.07%, which is the highest accuracy among CNN-based TSR works implemented on embedded platforms. The proposed hardware accelerator achieves a computation performance of 960 MOPS and a frame rate of 40 FPS when implemented on a Xilinx ZC706 SoC. Consequently, this work improves by ×11.87 and ×36.7 on computation performance and frame rate compared to the previous work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阡陌完成签到 ,获得积分10
1秒前
姜汁树完成签到 ,获得积分10
2秒前
英姑应助silent采纳,获得10
3秒前
菠萝吹雪完成签到,获得积分10
3秒前
小白发布了新的文献求助10
4秒前
5秒前
bkagyin应助喜悦怀亦采纳,获得30
6秒前
8秒前
8秒前
Orangeade发布了新的文献求助10
9秒前
13秒前
ding应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
zmnzmnzmn应助科研通管家采纳,获得10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
zmnzmnzmn应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
zmnzmnzmn应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
甜甜映菡完成签到,获得积分10
18秒前
科研通AI5应助Orangeade采纳,获得10
19秒前
cloudyick完成签到,获得积分10
19秒前
Skyrin完成签到,获得积分0
19秒前
shine发布了新的文献求助10
24秒前
25秒前
科研通AI5应助heli采纳,获得10
25秒前
29秒前
搜集达人应助专注的问筠采纳,获得10
29秒前
32秒前
32秒前
32秒前
wangmp66完成签到,获得积分10
34秒前
富贵儿完成签到 ,获得积分10
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440