亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects

计算机科学 活动识别 卷积神经网络 人工智能 深度学习 数据科学 机器学习 人机交互
作者
Md. Milon Islam,Sheikh Nooruddin,Fakhri Karray,Ghulam Muhammad
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 106060-106060 被引量:80
标识
DOI:10.1016/j.compbiomed.2022.106060
摘要

Human Activity Recognition (HAR) plays a significant role in the everyday life of people because of its ability to learn extensive high-level information about human activity from wearable or stationary devices. A substantial amount of research has been conducted on HAR and numerous approaches based on deep learning have been exploited by the research community to classify human activities. The main goal of this review is to summarize recent works based on a wide range of deep neural networks architecture, namely convolutional neural networks (CNNs) for human activity recognition. The reviewed systems are clustered into four categories depending on the use of input devices like multimodal sensing devices, smartphones, radar, and vision devices. This review describes the performances, strengths, weaknesses, and the used hyperparameters of CNN architectures for each reviewed system with an overview of available public data sources. In addition, a discussion of the current challenges to CNN-based HAR systems is presented. Finally, this review is concluded with some potential future directions that would be of great assistance for the researchers who would like to contribute to this field. We conclude that CNN-based approaches are suitable for effective and accurate human activity recognition system applications despite challenges including availability of data regarding composite or group activities, high computational resource requirements, data privacy concerns, and edge computing limitations. For widespread adaptation, future research should be focused on more efficient edge computing techniques, datasets incorporating contextual information with activities, more explainable methodologies, and more robust systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TXZ06完成签到,获得积分10
3秒前
活人微die发布了新的文献求助10
8秒前
段晓坤发布了新的文献求助10
13秒前
pegasus0802完成签到,获得积分10
16秒前
tamo完成签到,获得积分10
17秒前
段晓坤完成签到,获得积分20
22秒前
28秒前
secret完成签到 ,获得积分10
28秒前
Spice完成签到 ,获得积分10
33秒前
悦耳破茧发布了新的文献求助10
34秒前
哈哈完成签到 ,获得积分10
35秒前
36秒前
淡淡宛完成签到 ,获得积分10
40秒前
42秒前
ding应助jufefit采纳,获得10
43秒前
九黎完成签到 ,获得积分10
43秒前
46秒前
优雅的冷卉完成签到 ,获得积分10
48秒前
56秒前
Lucas应助彭一鸣采纳,获得10
56秒前
expoem发布了新的文献求助10
58秒前
mawenxing完成签到,获得积分10
59秒前
1分钟前
康康完成签到,获得积分10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
斯寜应助科研通管家采纳,获得10
1分钟前
1分钟前
斯寜应助科研通管家采纳,获得10
1分钟前
qian完成签到,获得积分10
1分钟前
1分钟前
彭一鸣发布了新的文献求助10
1分钟前
科研通AI2S应助康康采纳,获得30
1分钟前
清爽的水蓝完成签到 ,获得积分10
1分钟前
丸子完成签到 ,获得积分10
1分钟前
wiwia完成签到,获得积分10
1分钟前
starry完成签到 ,获得积分10
1分钟前
1分钟前
yangzai完成签到 ,获得积分10
1分钟前
彭一鸣完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782623
求助须知:如何正确求助?哪些是违规求助? 3328009
关于积分的说明 10234218
捐赠科研通 3042990
什么是DOI,文献DOI怎么找? 1670417
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758968