Enhanced Water Quality Prediction in the Yellow River Basin: The Application of the HHO-LSTM Model

构造盆地 质量(理念) 地质学 水文学(农业) 环境科学 水资源管理 地貌学 岩土工程 物理 量子力学
作者
Minning Wu,Eric Blancaflor,Fei Ren,Yong Wang,Ting Dong
出处
期刊:International journal of online and biomedical engineering [International Association of Online Engineering]
卷期号:20 (05): 4-14
标识
DOI:10.3991/ijoe.v20i05.48225
摘要

In the pivotal water resource region of the Yellow River Basin in China, precise prediction of water resources is essential for their effective and rational management. This study introduces a novel approach to water resource prediction by employing the Harris Hawks Optimization-Long Short-Term Memory (HHO-LSTM) model. This method overcomes the constraints faced by traditional techniques in processing time series data and various variable factors. It encompasses a comprehensive description of the multi-source hydrological data collection process within the Yellow River Basin, followed by meticulous data preprocessing. The data set for this study includes estimates of four critical water quality parameters, and the efficacy of the model is gauged through the mean squared error (MSE) and root mean squared error (RMSE) metrics. This facilitates the projection of future water quality trends in specific areas by leveraging historical water quality data. The HHO-LSTM model has demonstrated outstanding accuracy and robustness in predicting water quality across diverse temporal scales and water resource variables, marking a significant advancement in water resource management within the Yellow River Basin. This approach not only enhances current management strategies but also contributes valuable insights for ongoing water resource research and decision-making processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kiyo_v完成签到,获得积分10
1秒前
1秒前
2秒前
lyabigale完成签到 ,获得积分10
2秒前
英俊的铭应助feng采纳,获得10
2秒前
潇洒发布了新的文献求助10
2秒前
2秒前
JWKim完成签到,获得积分10
3秒前
马一凡完成签到,获得积分0
3秒前
A_Caterpillar完成签到,获得积分10
4秒前
FashionBoy应助如风采纳,获得10
5秒前
5秒前
木木完成签到,获得积分10
6秒前
张乐发布了新的文献求助20
7秒前
Res_M发布了新的文献求助10
7秒前
Ava应助糖布里部采纳,获得10
7秒前
天天快乐应助伊小美采纳,获得10
8秒前
8秒前
9秒前
吉不二完成签到,获得积分10
10秒前
11秒前
李博士完成签到,获得积分10
11秒前
典雅的夜安完成签到,获得积分10
13秒前
HuaYu完成签到,获得积分10
13秒前
淡定的安白完成签到,获得积分10
13秒前
14秒前
14秒前
hjj完成签到,获得积分10
14秒前
小张同学完成签到 ,获得积分10
14秒前
14秒前
xiaoyan完成签到,获得积分20
15秒前
Hony132完成签到,获得积分10
15秒前
JamesPei应助王毅采纳,获得20
15秒前
feng完成签到,获得积分10
16秒前
16秒前
无花果应助jimmy采纳,获得10
16秒前
GrandeAmore完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4106596
求助须知:如何正确求助?哪些是违规求助? 3644634
关于积分的说明 11544805
捐赠科研通 3351293
什么是DOI,文献DOI怎么找? 1841360
邀请新用户注册赠送积分活动 908009
科研通“疑难数据库(出版商)”最低求助积分说明 825172